989 resultados para DIFFUSION-APPROXIMATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of conduction-convection-radiation on natural convection flow of Newtonian optically thick gray fluid, confined in a non-Darcian porous media square cavity is numerically studied. For the gray fluid consideration is given to Rosseland diffusion approximation. Further assuming that (i) the temperature of the left vertical wall is varying linearly with height, (ii) cooled right vertical and top walls and (iii) the bottom wall is uniformly-heated. The governing equations are solved using the Alternate Direct Implicit method together with the Successive Over Relaxation technique. The investigation of the effect of governing parameters namely the Forschheimer resistance (Γ), the Planck constant (Rd), and the temperature difference (Δ), on flow pattern and heat transfer characteristics has been carried out. It was seen that the reduction of flow and heat transfer occurs as the Forschheimer resistance is increased. On the other hand both the strength of flow and heat transfer increases as the temperature ratio, Δ, is increased.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is concerned the calculation of flame structure of one-dimensional laminar premixed flames using the technique of operator-splitting. The technique utilizes an explicit method of solution with one step Euler for chemistry and a novel probabilistic scheme for diffusion. The relationship between diffusion phenomenon and Gauss-Markoff process is exploited to obtain an unconditionally stable explicit difference scheme for diffusion. The method has been applied to (a) a model problem, (b) hydrazine decomposition, (c) a hydrogen-oxygen system with 28 reactions with constant Dρ 2 approximation, and (d) a hydrogen-oxygen system (28 reactions) with trace diffusion approximation. Certain interesting aspects of behaviour of the solution with non-unity Lewis number are brought out in the case of hydrazine flame. The results of computation in the most complex case are shown to compare very favourably with those of Warnatz, both in terms of accuracy of results as well as computational time, thus showing that explicit methods can be effective in flame computations. Also computations using the Gear-Hindmarsh for chemistry and the present approach for diffusion have been carried out and comparison of the two methods is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time–history of the performance of a system is treated as a stochastic corrective process, in which deterioration due to aging is counteracted at brief maintenance checks. Using a diffusion approximation for the deterioration, simple models are proposed for describing maintenance either by component replacement or by performance restoration. Equilibrium solutions of the models show that the performance has a probability distribution with exponential tails: the uncritical use of Gaussians can grossly underestimate the probability of poor performance. The proposed models are supported by recent observational evidence on aircraft track-keeping errors, which are shown to follow the modified exponential distribution derived here. The analysis also brings out the relation between the deterioration characteristics of the system and the intensity of the maintenance effort required to achieve a given performance reliability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nesta dissertação, são apresentados os seguintes modelos matemáticos de transporte de nêutrons: a equação linearizada de Boltzmann e a equação da difusão de nêutrons monoenergéticos em meios não-multiplicativos. Com o objetivo de determinar o período fluxo escalar de nêutrons, é descrito um método espectronodal que gera soluções numéricas para o problema de difusão em geometria planar de fonte fixa, que são livres de erros de truncamento espacial, e que conjugado com uma técnica de reconstrução espacial intranodal gera o perfil detalhado da solução. A fim de obter o valor aproximado do fluxo angular de nêutrons em um determinado ponto do domínio e em uma determinada direção de migração, descreve-se também um método de reconstrução angular baseado na solução analítica da equação unidimensional de transporte de nêutrons monoenergéticos com espalhamento linearmente anisotrópico com aproximação sintética de difusão nos termos de fonte por espalhamento. O código computacional desenvolvido nesta dissertação foi implementado na plataforma livre Scilab, e para ilustrar a eficiência do código criado,resultados numéricos obtidos para três problemas-modelos são apresentados

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell biology is characterised by low molecule numbers and coupled stochastic chemical reactions with intrinsic noise permeating and dominating the interactions between molecules. Recent work [9] has shown that in such environments there are hard limits on the accuracy with which molecular populations can be controlled and estimated. These limits are predicated on a continuous diffusion approximation of the target molecule (although the remainder of the system is non-linear and discrete). The principal result of [9] assumes that the birth rate of the signalling species is linearly dependent on the target molecule population size. In this paper, we investigate the situation when the entire system is kept discrete, and arbitrary non-linear coupling is allowed between the target molecule and downstream signalling molecules. In this case it is possible, by relying solely on the event triggered nature of control and signalling reactions, to define non-linear reaction rate modulation schemes that achieve improved performance in certain parameter regimes. These schemes would not appear to be biologically relevant, raising the question of what are an appropriate set of assumptions for obtaining biologically meaningful results. © 2013 EUCA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that the diffusion approximation breaks down for particle acceleration at oblique shocks with velocities typical of young supernova remnants. Higher order anisotropies flatten the spectral index at quasi-parallel shocks and steepen the spectral index at quasi-perpendicular shocks. We compare the theory with observed spectral indices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show how our recently proposed scheme for the measurement of the micromaser linewidth, which relates the phase diffusion dynamics of the cavity field to the population statistics of probe atoms, can be applied in the presence of trapping states, where the phase diffusion approximation does not strictly hold. This should allow the observation of the peculiar linewidth oscillations versus atomic pumping which are expected in this regime, and whose origin lies in the quantum nature of the cavity field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire analyse l’espérance du temps de fixation conditionnellement à ce qu’elle se produise et la probabilité de fixation d’un nouvel allèle mutant dans des populations soumises à différents phénomènes biologiques en uti- lisant l’approche des processus ancestraux. Tout d’abord, l’article de Tajima (1990) est analysé et les différentes preuves y étant manquantes ou incomplètes sont détaillées, dans le but de se familiariser avec les calculs du temps de fixa- tion. L’étude de cet article permet aussi de démontrer l’importance du temps de fixation sur certains phénomènes biologiques. Par la suite, l’effet de la sé- lection naturelle est introduit au modèle. L’article de Mano (2009) cite un ré- sultat intéressant quant à l’espérance du temps de fixation conditionnellement à ce que celle-ci survienne qui utilise une approximation par un processus de diffusion. Une nouvelle méthode utilisant le processus ancestral est présentée afin d’arriver à une bonne approximation de ce résultat. Des simulations sont faites afin de vérifier l’exactitude de la nouvelle approche. Finalement, un mo- dèle soumis à la conversion génique est analysé, puisque ce phénomène, en présence de biais, a un effet similaire à celui de la sélection. Nous obtenons finalement un résultat analytique pour la probabilité de fixation d’un nouveau mutant dans la population. Enfin, des simulations sont faites afin de détermi- nerlaprobabilitédefixationainsiqueletempsdefixationconditionnellorsque les taux sont trop grands pour pouvoir les calculer analytiquement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we investigated the light distribution under femtosecond laser illumination and its correlation with the collected diffuse scattering at the surface of ex-vivo rat skin and liver. The reduced scattering coefficients mu`s for liver and skin due to different scatterers have been determined with Mie-scattering theory for each wavelength (800, 630, and 490 nm). Absorption coefficients mu(a) were determined by diffusion approximation equation in correlation with measured diffused reflectance experimentally for each wavelength (800, 630, and 490 nm). The total attenuation coefficient for each wavelength and type of tissue were determined by linearly fitting the log based normalized intensity. Both tissues are strongly scattering thick tissues. Our results may be relevant when considering the use of femtosecond laser illumination as an optical diagnostic tool. [GRAPHICS] A typical sample of skin exposed to 630 nm laser light (C) 2010 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study stochastic billiards on general tables: a particle moves according to its constant velocity inside some domain D R(d) until it hits the boundary and bounces randomly inside, according to some reflection law. We assume that the boundary of the domain is locally Lipschitz and almost everywhere continuously differentiable. The angle of the outgoing velocity with the inner normal vector has a specified, absolutely continuous density. We construct the discrete time and the continuous time processes recording the sequence of hitting points on the boundary and the pair location/velocity. We mainly focus on the case of bounded domains. Then, we prove exponential ergodicity of these two Markov processes, we study their invariant distribution and their normal (Gaussian) fluctuations. Of particular interest is the case of the cosine reflection law: the stationary distributions for the two processes are uniform in this case, the discrete time chain is reversible though the continuous time process is quasi-reversible. Also in this case, we give a natural construction of a chord ""picked at random"" in D, and we study the angle of intersection of the process with a (d - 1) -dimensional manifold contained in D.