916 resultados para DIFFERENT IRRIGATION REGIMES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in dentin roughness, associated with surface composition, contributes to bacterial adherence in recontaminations. Surface roughness is also important for micromechanical interlocking of dental materials to dentin, and understanding the characteristics of the surface is essential to obtain the adhesion of root canal sealers that have different physico-chemical characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water deficit is the most limiting factor for yield and fruit-quality parameters in papaya crop (Carica papaya L.), deficit-irrigation (DI) strategies offering a feasible alternative to manage limiting water resources. When DI is applied, it is crucial to assess the physiological status of the crop in order to maintain the plant within a threshold value of water stress so as no to affect yield or fruit-quality parameters. The aim of this work was to evaluate the feasibility of thermal imaging in young papaya plants to assess the physiological status of this crop when it is subjected to different DI regimes, studying the relationships between the changes in leaf temperature (Tleaf) and in the major physiological parameters (i.e., stomatal conductance to water vapor, gs; transpiration, E; and net photosynthesis, An). The trial was conducted in a greenhouse from March to April of 2012. Plants were grown in pots and subjected to four irrigation treatments: (1) a full irrigation treatment (control), maintained at field capacity; (2) a partial root-zone drying treatment, irrigated with 50% of the total water applied to control to only one side of roots, alternating the sides every 7 days; (3) a regulated deficit irrigation (50% of the control, applied to both sides of plant); (4) and a non-irrigated treatment, in which irrigation was withheld from both sides of the split root for 14 days, followed by full irrigation until the end of the study. Significant relationships were found between Tleaf and major physiological variables such as gs, E and An. Additionally, significant relationships were found between the difference of leaf-to-air temperature (ΔTleaf–air) and gas-exchange measurements, which were used to establish the optimum range of ΔTleaf–air as a preliminary step to the crop-water monitoring and irrigation scheduling in papaya, using thermal imaging as the main source of information. According to the results, we conclude that thermal imaging is a promising technique to monitor the physiological status of papaya during drought conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconductivity in LnBa2Cu3O7 − δ with Ln = Nd, Eu, Gdand Dy has been investigated as a function of δ, closely following the accompanying changes in crystal structure. Orthorhombic GdBa2Cu3O7 − δ and DyBa2Cu3O7 − δ show a Tc of ≈ 90 K up to δ = 0.2 and a lower Tc plateau (40–50 K) in the δ range 02 to 0.4, similar to that found in YBa2Cu3O7 − δ. The orthorhombic structure II in the lower Tc regions is different from the structure I in the 90 K Tc (low δ) region. The unit cell parameters of the orthorhombic I structure in the high Tc region bear the relationship of a a ≠ b not, vert, similar c/3. This relationship is not seen in the low Tc plateau. The low Tc plateau region does not distinctly manifest itself in NdBa2Cu3O7 − δ just as in LaBa2Cu3O7 − δ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, we present the structure and composition of tropical evergreen and deciduous forests in the Western Ghats monitored under a long-term programme involving Indian Institute of Science, Earthwatch and volunteer investigators from HSBC. Currently, there is limited evidence on the status and dynamics of tropical forests in the context of human disturbance and climate change. Observations made in this study show that the `more disturbed' evergreen and one of the deciduous plots have low species diversity compared to the less-disturbed forests. There are also variations in the size class structure in the more and `less disturbed' forests of all the locations. The variation is particularly noticeable in the DBH size class 10 - 15 cm category. When biomass stock estimates are considered, there was no significant difference between evergreen and deciduous forests. The difference in biomass stocks between `less disturbed' and `more disturbed' forests within a forest type is also low. Thus, the biomass and carbon stock has not been impacted despite the dependence of communities on the forests. Periodic and long-term monitoring of the status and dynamics of the forests is necessary in the context of potential increased human pressure and climate change. There is, therefore, a need to inform the communities of the impact of extraction and its effect on regeneration so as to motivate them to adopt what may be termed as ``adaptive resource management'', so as to sustain the flow of forest products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of experiments conducted on ablated Penaeus monodon, fed with 4 different feeds (pellet-pellet, mussel-mussel, mussel-pellet and squid-pellet), on survival, spawning, fecundity and hatching rate are given and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Biologia (Biologia Marinha e Aquacultura), Universidade de Lisboa, Faculdade de Ciências, 2015