718 resultados para DIETARY GLUTAMINE
Resumo:
Background Et aims: To investigate the effect that early weaning associated with the ingestion of either a glutamine-free or supplemented diet has on the functioning of peritoneal. macrophages, hematopoiesis and nutritional status of mice. Methods: Swiss Webster mice were early weaned on their 14th day of life and distributed to two groups, being fed either a glutamine-free diet (-GLN) or a glutamine-supplemented diet (+GLN). Animals belonging to a control group (CON) were weaned on their 21st day of life. Results: The -GLN and +GLN groups had a lower lean body mass, carcass protein and ash content, plasma glutamine concentration and lymphocyte counts both in the peripheral blood and bone marrow when compared to the CON group (P < 0.05). Dietary supplementation with glutamine reversed both the lower concentrations of protein and DNA in the muscle and liver, as well. as the reduced capacity of spreading and synthesizing nitric oxide, hydrogen peroxide, TNF-alpha, IL-1 beta and IL-6 in cultures of peritoneal. macrophages obtained from the -GLN group (P < 0.05). Conclusion: These data indicate that the ingestion of glutamine modulates the function of peritoneal macrophages in early weaned mice. However, a glutamine-supplemented diet cannot substitute maternal milk in respect to immunological and metabolic parameters. (C) 2008 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
Infants who are breast-fed have been shown to have a lower incidence of certain infectious diseases compared with formula-fed infants. Glutamine is one of the most abundant amino acids found in maternal milk and it is essential for the function of immune system cells such as macrophages. The purpose of this study was to investigate the effect of glutamine supplementation on the function of peritoneal macrophages and on hemopoiesis in early-weaned mice inoculated with Mycobacterium bovis bacillus Calmette-Guerin (BCG). Mice were wearied at 14 d of age and distributed to 2 groups and fed either a glutamine-free diet (n = 16) or a glutamine-supplemented diet (+Gln (n = 16). Both diets were isonitrogenous (with addition of a mixture of nonessential amino acids) and isocaloric. At d 21, 2 subgroups of mice (n = 16) were intraperitoneally injected with BCG and all mice were killed at d 28. Plasma, muscle and liver glutamine concentrations and muscle glutamine synthetase activity were not affected by diet or inoculation with BCG. The +GIn diet led to increased leukocyte and lymphocyte counts in the peripheral blood (P < 0.05) and granulocyte and lymphocyte counts in the bone marrow and spleen (P < 0.05). The +GIn diet increased spreading and adhesion capacities, hydrogen peroxide, nitric oxide, and tumor necrosis factor-alpha (TNF alpha) syntheses and the phagocytic and fungicidal activity of peritoneal macrophages (P < 0.05). The interaction between the +GIn diet and BCG inoculation increased the area under the curve of interleukin (IL)-1 beta and TNF alpha syntheses (P < 0.05). In conclusion, the intake of glutamine increases the function of peritoneal macrophages and hemopoiesis in early-weaned and BCG-inoculated mice. These data have important implications for the design of breast milk substitutes for human infants.
Resumo:
Objective: Glutamine is one of the most abundant amino acids found in maternal milk, and its concentration increases throughout lactation. Because glutamine is essential for macrophage functionality, it is hereby suggested that early weaning in conjunction with the absence of glutamine consumption impairs the functioning of macrophages, which could in turn be reversed with an in vitro supplementation with glutamine. Methods: Swiss Webster mice were early weaned at 14 d of age (EW group) or at 21 d of age (control group, n = 8 per group). The EW group was fed a glutamine-free diet from days 14 to 21 of life. Results: Mice in the EW group presented a significant decrease in plasma and muscle concentrations of glutamine and an increase in the activity of glutamine synthetase in the muscle. Peritoneal macrophages obtained from animals in the EW group presented a significant increase in the production of interleukin (IL)-10 and a significant decrease in the synthesis of IL-1 beta, IL-6, tumor necrosis factor-a, nitric oxide, and hydrogen peroxide and in their ability to adhere, spread, phagocytize, and kill fungi. Glutamine in vitro supplementation reversed the decrease in IL-6, nitric oxide, and hydrogen peroxide synthesis and the decrease in the capacity to adhere, spread, and phagocytize in animals of the EW group. Conclusion: These new. data may imply that a lack of glutamine intake in early weaned mice hampers the functioning of peritoneal macrophages. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Cette étude vise à estimer l’apport en glutamine (Gln) alimentaire chez des athlètes soumis à un protocole de supplémentation en glutamine ainsi qu’à clarifier les informations diffusées au grand public en ce qui concerne les sources alimentaires de glutamine. Des études cliniques ont démontré que la supplémentation en glutamine pouvait réduire la morbidité et la mortalité chez des sujets en phase critique (grands brulés, chirurgie…). Le mécanisme en cause semble impliquer le système immunitaire. Cependant, les études chez les sportifs, dont le système immunitaire a de fortes chances d’être affaibli lors de périodes d’entraînement prolongées impliquant des efforts longs et intenses, n’ont pas été concluantes. Or, ces études négligent systématiquement l’apport alimentaire en glutamine, si bien qu’il est probable que les résultats contradictoires observés puissent en partie être expliqués par les choix alimentaires des sujets. Puisque la méthode conventionnelle de dosage des acides aminés dans les protéines alimentaires transforme la glutamine en glutamate, les tables de composition des aliments présentent la glutamine et le glutamate ensemble sous la dénomination « glutamate » ou « Glu », ce qui a comme conséquence de créer de l’ambiguïté. La dénomination « Glx » devrait être utilisée. Partant de la probabilité qu’un apport en Glx élevé soit un bon indicateur de l’apport en glutamine, nous avons créé un calculateur de Glx et avons évalué l’alimentation de 12 athlètes faisant partie d’une étude de supplémentation en glutamine. Nous avons alors constaté que l’apport en Glx était directement proportionnel à l’apport en protéines, avec 20,64 % ± 1,13 % de l’apport protéique sous forme de Glx. Grâce à quelques données sur la séquence primaire des acides aminés, nous avons pu constater que le rapport Gln/Glx pouvait être très variable d’un type de protéine à l’autre. Alors que le ratio molaire Gln/Glx est de ~95 % pour les α et β-gliadines, il n’est que de ~43 % pour la caséine, de ~36 % pour la β-lactoglobuline, de ~31 % pour l’ovalbumine et de ~28 % pour l’actine. Il est donc possible que certaines protéines puissent présenter des avantages par rapport à d’autres, à quantité égale de Glx.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study examined the relationship between muscle glutamine, muscle glycogen, and plasma glutamine concentrations over 3 d of high-intensity exercise during which dietary carbohydrate (CHO) intake varied. Methods: Five endurance-trained men completed two exercise trials in randomized order, over a 14-d period. Each trial required subjects to perform 50 min of high-intensity continuous and interval exercise on three consecutive days while consuming a diet that provided 45% of the energy as CHO or a diet in which CHO provided 70% of the total energy. Four days of inactivity and consumption of a 55% CHO diet separated the two randomized trials. Menus and food were provided for the subjects and all food and drink consumed were weighed and recorded for later analysis. Before exercise on the first day of each trial, at the start of exercise on day 3 and on completion of exercise on day 3, muscle was biopsied from the vastus lateralis for the analysis of glutamine and glycogen concentrations. Venous blood was sampled before and twice after exercise on each day for the analysis of plasma glutamine and cortisol concentrations. Results: Mean plasma glutamine concentration was significantly higher during the 70% CHO exercise trial when compared with the 45% CHO trial (P < 0.05). Glycogen decreased by the same magnitude during both trials and there was no relationship between changes in plasma glutamine and changes in muscle glycogen concentration. Muscle glutamine concentration did not change in either trial. Conclusions: These data suggest that the influence of carbohydrate intake upon the concentration of plasma glutamine is not mediated through the concentration of intramuscular glycogen.
Resumo:
BACKGROUND: The recent large randomized controlled trial of glutamine and antioxidant supplementation suggested that high-dose glutamine is associated with increased mortality in critically ill patients with multiorgan failure. The objectives of the present analyses were to reevaluate the effect of supplementation after controlling for baseline covariates and to identify potentially important subgroup effects. MATERIALS AND METHODS: This study was a post hoc analysis of a prospective factorial 2 × 2 randomized trial conducted in 40 intensive care units in North America and Europe. In total, 1223 mechanically ventilated adult patients with multiorgan failure were randomized to receive glutamine, antioxidants, both glutamine and antioxidants, or placebo administered separate from artificial nutrition. We compared each of the 3 active treatment arms (glutamine alone, antioxidants alone, and glutamine + antioxidants) with placebo on 28-day mortality. Post hoc, treatment effects were examined within subgroups defined by baseline patient characteristics. Logistic regression was used to estimate treatment effects within subgroups after adjustment for baseline covariates and to identify treatment-by-subgroup interactions (effect modification). RESULTS: The 28-day mortality rates in the placebo, glutamine, antioxidant, and combination arms were 25%, 32%, 29%, and 33%, respectively. After adjusting for prespecified baseline covariates, the adjusted odds ratio of 28-day mortality vs placebo was 1.5 (95% confidence interval, 1.0-2.1, P = .05), 1.2 (0.8-1.8, P = .40), and 1.4 (0.9-2.0, P = .09) for glutamine, antioxidant, and glutamine plus antioxidant arms, respectively. In the post hoc subgroup analysis, both glutamine and antioxidants appeared most harmful in patients with baseline renal dysfunction. No subgroups suggested reduced mortality with supplements. CONCLUSIONS: After adjustment for baseline covariates, early provision of high-dose glutamine administered separately from artificial nutrition was not beneficial and may be associated with increased mortality in critically ill patients with multiorgan failure. For both glutamine and antioxidants, the greatest potential for harm was observed in patients with multiorgan failure that included renal dysfunction upon study enrollment.
Resumo:
Le but de cette étude consiste à démontrer l’impact positif d’une supplémentation en glutamine chez des nageurs élites, afin d’améliorer le statut immunitaire et d’évaluer si les changements plasmatiques de la glutamine peuvent expliquer l’incidence d’infections des voies respiratoires (IVRS). En parallèle, ce projet évalue si les apports alimentaires influencent la glutamine plasmatique et l’incidence d’IVRS. L’étude s’est effectuée auprès de 14 athlètes élites (8 hommes, 6 femmes). Chaque athlète a participé aux deux conditions expérimentales : un supplément de glutamine et une solution placebo isocalorique. Les périodes de supplémentation se déroulaient sur sept jours, incluant trois journées consécutives de compétition. Le profil hématologique, après les compétitions, montre qu’un supplément de glutamine n’améliore pas significativement la concentration plasmatique en glutamine ni les niveaux de cytokines comparativement à une solution placebo. Bien que les résultats soient semblables sous les deux conditions, les niveaux post-compétition ont tendance à être supérieurs aux valeurs pré-supplémentation, lorsqu’un apport exogène en glutamine est fourni à l’organisme alors que les concentrations plasmatiques de glutamine tendent à diminuer lorsqu’une solution placebo est administrée (p=0.067). L'incidence d’IVRS ne peut être expliquée par une faible concentration plasmatique de glutamine ni par un apport exogène de glutamine. On observe cependant une augmentation d’IVRS suite aux compétitions, soient de 8 athlètes pour le groupe placebo contre 3 au groupe glutamine. Les athlètes atteints d'IVRS semblent consommer moins d'énergie totale (kcal) et de protéines que les athlètes sains (p=0.060). Les résultats obtenus ne démontrent pas qu’une supplémentation en glutamine améliore le profil immunitaire et ne prévienne l’incidence d’IVRS, mais ils soulèvent l’hypothèse qu’un apport exogène en glutamine stabilise les niveaux plasmatiques de glutamine, permettant aux athlètes de poursuivre leurs entraînements et de récupérer efficacement.
Resumo:
Glutamine is the most important donor of NH(3) in kidney playing an important role in acid-base buffering system. Besides this effect, glutamine presents many other relevant functions in the whole body, such as a precursor of arginine in adult and neonates. In addition to these effects, some studies have shown that glutamine can potentiate renal disease. In the present study, the effect of short-term treatment (15 days) with glutamine on control and diabetic rats was investigated. Using biochemical, histological and molecular biology analysis from control and diabetic rats we verified that glutamine supplementation increase in pro-inflammatory interleukins (IL)-1 beta and IL-6 content in renal cortex and induce alteration in glomerular characteristics. This study showed that short-term treatment with glutamine in association with increased glucose levels could cause important alterations in glomerular morphology that may result in fast progression of kidney failure.
Resumo:
Several studies have suggested that dietary supplementation with antioxidants can influence the response to chemotherapy as well as the development of adverse side effects that result from treatment with antineoplastic agents. The emphasis of the present study was to investigate whether the administration of a single dose of oral glutamine had any protective effect against cisplatin-induced clastogenicity. Cisplatin was administered to Wistar rats either alone or after treatment with glutamine. The rats were treated with glutamine (300 mg/kg b.w.) by gavage 24 h before the administration of cisplatin (5 mg/kg b.w., i.p.) and then sacrificed 24h after treatment with cisplatin. Glutamine significantly reduced (by about 48%) the clastogenicity of cisplatin in rat bone marrow cells. The antioxidant action of glutamine presumably modulates the clastogenic action of cisplatin. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To assess the effects of a soy dietary supplement on the main biomarkers of cardiovascular health in postmenopausal women compared with the effects of low-dose hormone therapy (HT) and placebo. Double-blind, randomized and controlled intention-to-treat trial. Sixty healthy postmenopausal women, aged 40-60 years, 4.1 years mean time since menopause were recruited and randomly assigned to 3 groups: a soy dietary supplement group (isoflavone 90mg), a low-dose HT group (estradiol 1 mg plus noretisterone 0.5 mg) and a placebo group. Lipid profile, glucose level, body mass index, blood pressure and abdominal/hip ratio were evaluated in all the participants at baseline and after 16 weeks. Statistical analyses were performed using the χ2 test, Fisher's exact test, Kruskal-Wallis non-parametric test, analysis of variance (ANOVA), paired Student's t-test and Wilcoxon test. After a 16-week intervention period, total cholesterol decreased 11.3% and LDL-cholesterol decreased 18.6% in the HT group, but both did not change in the soy dietary supplement and placebo groups. Values for triglycerides, HDL-cholesterol, glucose level, body mass index, blood pressure and abdominal/hip ratio did not change over time in any of the three groups. The use of dietary soy supplement did not show any significant favorable effect on cardiovascular health biomarkers compared with HT. The trial is registered at the Brazilian Clinical Trials Registry (Registro Brasileiro de Ensaios Clínicos - ReBEC), number RBR-76mm75.
Resumo:
The consumption of dietary supplements is highest among athletes and it can represent potential a health risk for consumers. The aim of this study was to determine the prevalence of consumption of dietary supplements by road runners. We interviewed 817 volunteers from four road races in the Brazilian running calendar. The sample consisted of 671 male and 146 female runners with a mean age of 37.9 ± 12.4 years. Of the sample, 28.33% reported having used some type of dietary supplement. The main motivation for this consumption is to increase in stamina and improve performance. The probability of consuming dietary supplements increased 4.67 times when the runners were guided by coaches. The consumption of supplements was strongly correlated (r = 0.97) with weekly running distance, and also highly correlated (r = 0.86) with the number of years the sport had been practiced. The longer the runner had practiced the sport, the higher the training volume and the greater the intake of supplements. The five most frequently cited reasons for consumption were: energy enhancement (29.5%), performance improvement (17.1%), increased level of endurance (10.3%), nutrient replacement (11.1%), and avoidance of fatigue (10.3%). About 30% of the consumers declared more than one reason for taking dietary supplements. The most consumed supplements were: carbohydrates (52.17%), vitamins (28.70%), and proteins (13.48%). Supplement consumption by road runners in Brazil appeared to be guided by the energy boosting properties of the supplement, the influence of coaches, and the experience of the user. The amount of supplement intake seemed to be lower among road runners than for athletes of other sports. We recommend that coaches and nutritionists emphasise that a balanced diet can meet the needs of physically active people.
Resumo:
This study compares the impact of obesogenic environment (OE) in six different periods of development on sperm parameters and the testicular structure of adult rats and their correlations with sex steroid and metabolic scenario. Wistar rats were exposed to OE during gestation (O1), during gestation/lactation (O2), from weaning to adulthood (O3), from lactation to adulthood (O4), from gestation to sexual maturity (O5), and after sexual maturation (O6). OE was induced by a 20% fat diet, and control groups were fed a balanced diet (4% fat). Serum leptin levels and adiposity index indicate that all groups were obese, except for O1. Three progressive levels of impaired metabolic status were observed: O1 presented insulin resistance, O2 were insulin resistant and obese, and groups O3, O4, and O5 were insulin resistant, obese, and diabetic. These three levels of metabolic damage were proportional to the increase of leptin and decreased circulating testosterone. The impairment in the daily sperm production (DSP) paralleled these three levels of metabolic and hormonal damage being marginal in O1, increasing in O2, and being higher in groups O3, O4, O5, and O6. None of the OE periods affected the sperm transit time in the epididymis, and the lower sperm reserves were caused mainly by impaired DSP. In conclusion, OE during sexual maturation markedly reduces the DSP at adulthood in the rat. A severe reduction in the DSP also occurs in OE exposure during gestation/lactation but not in gestation, indicating that breast-feeding is a critical period for spermatogenic impairment under obesogenic conditions.
Resumo:
The effects were assessed of two energy sources in concentrate (ground grain corn vs. citrus pulp) and two nitrogen sources (soybean meal vs. urea) on rumen metabolism in four buffaloes and four zebu cattle (Nellore) with rumen cannula and fed in a 4 × 4 Latin square design with feeds containing 60% sugar cane. Energy supplements had no effect on the rumen ammonia concentration in cattle, but ground grain corn promoted higher ammonia level than citrus pulp in buffalo. Urea produced higher ammonia level than soybean meal in both animal species. On average, the buffaloes maintained a lower rumen ammonia concentration (11.7 mg/dL) than the cattle (14.5 mg/dL). Buffaloes had lower production of acetic acid than cattle (58.7 vs. 61.6 mol/100 mol) and higher of propionic acid (27.4 vs. 23.6 mol/100 mol). There was no difference in the butyric acid production between the buffaloes (13.6 mol/100 mol) and cattle (14.8 mol/100 mol) and neither in the total volatile fatty acids concentration (82.5 vs. 83.6 mM, respectively). The energy or nitrogen sources had no effect on rumen protozoa count in either animal species. The zebu cattle had higher rumen protozoa population (8.8 × 10(5)/mL) than the buffaloes (6.1 × 10(5)/mL). The rumen protozoa population differed between the animal species, except for Dasytricha and Charonina. The buffaloes had a lower Entodinium population than the cattle (61.0 vs 84.9%, respectively) and a greater percentage of species belonging to the Diplodiniinae subfamily than the cattle (28.6 vs. 1.4%, respectively). In cattle, ground corn is a better energy source than citrus pulp for use by Entodinium and Diplodiniinae. In the buffaloes, the Entodinium are favored by urea and Diplodiniinae species by soybean meal.