980 resultados para DIAMOND FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for pattern transfer onto carbon-diamond films deposited by radio-frequency plasma-enhanced chemical vapour deposition is reported. Such a technique involves standard photolithography processes and reactive ion etching by oxygen and is compatible with present day microelectronic technology. The patterns transferred are well defined with very good resolution. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diamond films were prepared by microwave plasma chemical vapor deposition (MWPCVD). In order to obtain better field emission properties, the samples coated with different metals were prepared. The results showed that the field emission properties of diamond coated with metals could be greatly improved in comparison to pure diamond film and the different kinds of coated metals have different influences on the field emission properties. The possible reasons of effects on the field emission properties are discussed, which were probably due to the reduced effective surface work function by metal coatings; but the detail of the mechanism should be studied further. The surface morphology and microstructure of the sample were characterized by Atomic Force Microscope (AFM), X-ray photoelectron spectroscopy (XPS), X-ray Diffraction (XRD) and Raman spectrum tests. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of diamond as a semiconductor for the realization of transistor structures, which can operate at high temperatures (>700 K), is of increasing interest. In terms of bipolar devices, the growth of n-type phosphorus doped diamond is more efficient on the (111) growth plane; p-type boron-doped diamond growth has been most usually grown in the (100) direction and, hence, this study into the electronic properties, at high temperatures, of boron-doped diamond (111) homoepitaxial layers. It is shown that highly doped layers (hole carrier concentrations as high as 2×1020 cm-3) can be produced without promoting the onset of (unwanted) hopping conduction. The persistence of valance-band conduction in these films enables relatively high mobility values to be measured ( ~ 20 cm2/V?s) and, intriguingly, these values are not significantly reduced at high temperatures. The layers also display very low compensation levels, a fact that may explain the high mobility values since compensation is required for hopping conduction. The results are discussed in terms of the potential of these types of layers for use with high temperature compatible diamond transistors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we investigate the impact of minute amounts of pure nitrogen addition into conventional methane/hydrogen mixtures on the growth characteristics of nanocrystalline diamond (NCD) films by microwave plasma assisted chemical vapour deposition (MPCVD), under high power conditions. The NCD films were produced from a gas mixture of 4% CH4/H2 with two different concentrations of N2 additive and microwave power ranging from 3.0 kW to 4.0 kW, while keeping all the other operating parameters constant. The morphology, grain size, microstructure and texture of the resulting NCD films were characterized by using scanning electron microscope (SEM), micro-Raman spectroscopy and X-ray diffraction (XRD) techniques. N2 addition was found to be the main parameter responsible for the formation and for the key change in the growth characteristics of NCD films under the employed conditions. Growth rates ranging from 5.4 μm/h up to 9.6 μm/h were achieved for the NCD films, much higher than those usually reported in the literature. The enhancing factor of nitrogen addition on NCD growth rate was obtained by comparing with the growth rate of large-grained microcrystalline diamond films grown without nitrogen and discussed by comparing with that of single crystal diamond through theoretical work in the literature. This achievement on NCD growth rate makes the technology interesting for industrial applications where fast coating of large substrates is highly desirable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of methane concentration in hydrogen plasma on the growth of large-grained polycrystalline diamond (PCD) films and its hydrogen impurity incorporation. The diamond samples were produced using high CH4 concentration in H2 plasma and high power up to 4350 W and high pressure (either 105 or 110 Torr) in a microwave plasma chemical vapor deposition (MPCVD) system. The thickness of the free-standing diamond films varies from 165 µm to 430 µm. Scanning electron microscopy (SEM), micro-Raman spectroscopy and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the morphology, crystalline and optical quality of the diamond samples, and bonded hydrogen impurity in the diamond films, respectively. Under the conditions employed here, when methane concentration in the gas phase increases from 3.75% to 7.5%, the growth rate of the PCD films rises from around 3.0 µm/h up to 8.5 µm/h, and the optical active bonded hydrogen impurity content also increases more than one times, especially the two CVD diamond specific H related infrared absorption peaks at 2818 and 2828 cm−1 rise strongly; while the crystalline and optical quality of the MCD films decreases significantly, namely structural defects and non-diamond carbon phase content also increases a lot with increasing of methane concentration. Based on the results, the relationship between methane concentration and diamond growth rate and hydrogen impurity incorporation including the form of bonded infrared active hydrogen impurity in CVD diamonds was analyzed and discussed. The effect of substrate temperature on diamond growth was also briefly discussed. The experimental findings indicate that bonded hydrogen impurity in CVD diamond films mainly comes from methane rather than hydrogen in the gas source, and thus can provide experimental evidence for the theoretical study of the standard methyl species dominated growth mechanism of CVD diamonds grown with methane/hydrogen mixtures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report high growth rate of nanocrystalline diamond (NCD) films on silicon wafers of 2 inches in diameter using a new growth regime, which employs high power and CH4/H2/N2/O2 plasma using a 5 kW MPCVD system. This is distinct from the commonly used hydrogen-poor Ar/CH4 chemistries for NCD growth. Upon rising microwave power from 2000 W to 3200 W, the growth rate of the NCD films increases from 0.3 to 3.4 μm/h, namely one order of magnitude enhancement on the growth rate was achieved at high microwave power. The morphology, grain size, microstructure, orientation or texture, and crystalline quality of the NCD samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and micro-Raman spectroscopy. The combined effect of nitrogen addition, microwave power, and temperature on NCD growth is discussed from the point view of gas phase chemistry and surface reactions. © 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Boron-doped diamond is a promising electrode material for a number of applications providing efficient carrier transport, a high stability of the electrolytic performance with time, a possibility for dye-sensitizing with photosensitive molecules, etc. It can be functionalized with electron donor molecules, like phthalocyanines or porphyrins, for the development of light energy conversion systems. For effective attachment of such molecules, the diamond surface has to be modified by plasma- or photo-chemical processes in order to achieve a desired surface termination. In the present work, the surface modifications of undoped and boron-doped nanocrystalline diamond (NCD) films and their functionalization with various phthalocyanines (Pcs) were investigated. The NCD films have been prepared by hot filament chemical vapor deposition (HFCVD) on silicon substrates and were thereafter subjected to modifications with O2 or NH3 plasmas or UV/O3 treatments for exchange of the H-termination of the as-grown surface. The effectiveness of the modifications and their stability with time during storage under different ambients were studied by contact angle measurements and X-ray photoelectron spectroscopy (XPS). Furthermore, the surface roughness after the modifications was investigated with atomic force microscopy (AFM) and compared to that of as-grown samples in order to establish the appearance of etching of the surface during the treatment. The as-grown and the modified NCD surfaces were exposed to phthalocyanines with different metal centers (Ti, Cu, Mn) or with different side chains. The results of the Pc grafting were investigated by XPS and Raman spectroscopy. XPS revealed the presence of nitrogen stemming from the Pc molecules and traces of the respective metal atoms with ratios close to those in the applied Pc. In a next step Raman spectra of Ti-Pc, Cu-Pc and Mn-Pc were obtained with two different excitation wavelengths (488 and 785 nm) from droplet samples on Si after evaporation of the solvent in order to establish their Raman fingerprints. The major differences in the spectra were assigned to the effect of the size of the metal ion on the structure of the phthalocyanine ring. The spectra obtained were used as references for the Raman spectra of NCD surfaces grafted with Pc. Finally, selected boron doped NCD samples were used after their surface modification and functionalization with Pc for the preparation of electrodes which were tested in a photoelectrochemical cell with a Pt counter electrode and an Ag/AgCl reference electrode. The light sources and electrolytes were varied to establish their influence on the performance of the dye-sensitized diamond electrodes. Cyclic voltammetry measurements revealed broad electrochemical potential window and high stability of the electrodes after several cycles. The open circuit potential (OCP) measurements performed in dark and after illumination showed fast responses of the electrodes to the illumination resulting in photocurrent generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV and visible photoconductivity and electrical features of undoped diamond thin films grown by microwave plasma-assisted chemical vapour deposition (MP-CVD) on silicon and copper substrates are studied. The results are correlated with morphology properties analysed by atomic force microscopy (AFM) and micro-Raman. The photoconductivity presents several bands from 1.8 to 3.8 eV that are dependent on the substrate used to grow the samples in spite of some common bands observed. The J-V curve tin DC) in samples grown on Si has a rectifier behaviour (Schottky emission) in opposition to the samples grown on Cu that have no rectification (SCLC conduction). With these results we can conclude that diamond based optoelectronic devices behaviour is controlled by two kinds of structural defects localized in microcrystal and in its boundaries. A general structure model for the optoelectronic behaviour is discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of microelectrical conduction in microwave plasma assisted chemical vapour deposition (MPCVD) diamond films were investigated using an atomic force microscopy probe, giving a morphological map of the electrical conduction with a spatial resolution better than 500 nm. Also, a cathodoluminescence map with a spatial resolution of about 1 mu m was obtained, giving the possibility of correlating the defects involved in the different carrier transport phenomena. Using micro-Raman analysis several bands could be identified. It is found that the defects responsible for the cathodoluminescence (CL) blue band are responsible for the major part of the electrical conduction in diamond films, while the defects localised in < 111 > surfaces, responsible for the green CL emission, could be involved in a less conductive process. (C) 2000 Elsevier Science S.A. All rights reserved.