106 resultados para DEPOLYMERIZATION
Resumo:
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.
Resumo:
Depolymerization of purified organosolv eucalyptus wood lignin by the heterogeneous catalysts, cobalt polyphosphate (CoP2O6) and calcium phosphate (β-CaP2O6) was investigated. A total syringol yield of 16.7% was achieved with β-CaP2O6 in a methanol/water (50/50, wt/wt) solvent system after depolymerization at 300 ºC for 1 h, showing selectivity of the catalyst.
Resumo:
280 p. : il.
Resumo:
The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To compare the polymerization status of mouse oocyte spindles exposed to various temperatures at various stages of meiosis. Design: Experimental animal study. Setting: University animal laboratory. Animal(s): CF1 mice. Intervention(s): Immature oocytes matured to metaphase I (MI), telophase I (TI), and metaphase II (MII) were incubated at 37 degrees C (control), room temperature (RT), or 4 degrees C for 0, 10, 30, and 60 minutes. Spindle analysis subsequently was performed using polarized field microscopy and immunocytochemistry. Spindles of TI and MII oocytes that underwent vitrification and warming were analyzed also by immunocytochemistry. Main Outcome Measure(s): Detection of polymerized meiotic spindles. Result(s): At RT, and after 60 minutes at 4 degrees C, a significant time-dependent decrease in the percentage of polymerized meiotic spindles was observed in MI and MII oocytes, but not in TI oocytes. The polymerization of TI spindles at 4 degrees C was similar to that of TI spindles at 4 degrees C that underwent vitrification and warming. Conclusion(s): Significant differences in the microtubule dynamics of MI, TI, and MII oocytes incubated at different temperatures were observed. In particular, meiotic spindles in TI oocytes exhibited less depolymerization than did metaphase spindles. (Fertil Steril (R) 2012; 97: 714-9. (C) 2012 by American Society for Reproductive Medicine.)
Resumo:
Macrophage ingestion of the yeast Candida albicans requires its recognition by multiple receptors and the activation of diverse signaling programs. Synthesis of the lipid mediator prostaglandin E-2 (PGE(2)) and generation of cyclic adenosine monophosphate (cAMP) also accompany this process. Here, we characterized the mechanisms underlying PGE(2)-mediated inhibition of phagocytosis and filamentous actin (F-actin) polymerization in response to ingestion of C. albicans by alveolar macrophages. PGE(2) suppressed phagocytosis and F-actin formation through the PGE(2) receptors EP2 and EP4, cAMP, and activation of types I and II protein kinase A. Dephosphorylation and activation of the actin depolymerizing factor cofilin-1 were necessary for these inhibitory effects of PGE(2). PGE(2)-dependent activation of cofilin-1 was mediated by the protein phosphatase activity of PTEN (phosphatase and tensin homolog deleted on chromosome 10), with which it directly associated. Because enhanced production of PGE(2) accompanies many immunosuppressed states, the PTEN-dependent pathway described here may contribute to impaired antifungal defenses.
Resumo:
Malaria parasite digests hemoglobin and utilizes the globin part for its nutritional requirements. Heme released as a byproduct of hemoglobin degradation is detoxified by polymerization into a crystalline, insoluble pigment, known as hemozoin. We have identified a novel reaction of depolymerization of hemozoin to heme. This reaction is initiated by the interaction of blood schizonticidal antimalarial drugs with the malarial hemozoin. The reaction has been confirmed, with the purified hemozoin as well as the lysate of the malaria parasite. Pigment breakdown was studied by infrared spectroscopy, thin-layer chromatography and spectrophotometric analysis. It was complete within 2 h of drug exposure, which explains the selective sensitivity of late stages (trophozoites and schizonts) of malarial parasites loaded with the hemozoin pigment to the toxic action of these drugs. It is suggested that the failure of the parasite heme detoxification system due to this reaction results in the accumulation of toxic heme, which alone, or complexed with the antimalarial leads to the death of malaria parasite.
Resumo:
Heparinase I from Flavobacterium heparinum has important uses for elucidating the complex sequence heterogeneity of heparin-like glycosaminoglycans (HLGAGs). Understanding the biological function of HLGAGs has been impaired by the limited methods for analysis of pure or mixed oligosaccharide fragments. Here, we use methodologies involving MS and capillary electrophoresis to investigate the sequence of events during heparinase I depolymerization of HLGAGs. In an initial step, heparinase I preferentially cleaves exolytically at the nonreducing terminal linkage of the HLGAG chain, although it also cleaves internal linkages at a detectable rate. In a second step, heparinase I has a strong preference for cleaving the same substrate molecule processively, i.e., to cleave the next site toward the reducing end of the HLGAG chain. Computer simulation showed that the experimental results presented here from analysis of oligosaccharide degradation were consistent with literature data for degradation of polymeric HLGAG by heparinase I. This study presents direct evidence for a predominantly exolytic and processive mechanism of depolymerization of HLGAG by heparinase I.
Resumo:
Heparin-like glycosaminoglycans, acidic complex polysaccharides present on cell surfaces and in the extracellular matrix, regulate important physiological processes such as anticoagulation and angiogenesis. Heparin-like glycosaminoglycan degrading enzymes or heparinases are powerful tools that have enabled the elucidation of important biological properties of heparin-like glycosaminoglycans in vitro and in vivo. With an overall goal of developing an approach to sequence heparin-like glycosaminoglycans using the heparinases, we recently have elaborated a mass spectrometry methodology to elucidate the mechanism of depolymerization of heparin-like glycosaminoglycans by heparinase I. In this study, we investigate the mechanism of depolymerization of heparin-like glycosaminoglycans by heparinase II, which possesses the broadest known substrate specificity of the heparinases. We show here that heparinase II cleaves heparin-like glycosaminoglycans endolytically in a nonrandom manner. In addition, we show that heparinase II has two distinct active sites and provide evidence that one of the active sites is heparinase I-like, cleaving at hexosamine–sulfated iduronate linkages, whereas the other is presumably heparinase III-like, cleaving at hexosamine–glucuronate linkages. Elucidation of the mechanism of depolymerization of heparin-like glycosaminoglycans by the heparinases and mutant heparinases could pave the way to the development of much needed methods to sequence heparin-like glycosaminoglycans.
Resumo:
The ssp1 gene encodes a protein kinase involved in alteration of cell polarity in Schizosaccharomyces pombe. ssp1 deletion causes stress sensitivity, reminiscent of defects in the stress-activated MAP kinase, Spc1; however, the two protein kinases do not act through the same pathway. Ssp1 is localized mainly in the cytoplasm, but after a rise in external osmolarity it is rapidly recruited to the plasma membrane, preferentially to active growth zones and septa. Loss of Ssp1 function inhibits actin relocalization during osmotic stress, in cdc3 and cdc8 mutant backgrounds, and in the presence of latrunculin A, implicating Ssp1 in promotion of actin depolymerization. We propose a model in which Ssp1 can be activated independently of Spc1 and can partially compensate for its loss. The ssp1 deletion mutant exhibited monopolar actin distribution, but new end take-off (NETO) could be induced in these cells by exposure to KCl or to latrunculin A pulse treatment. This treatment induced NETO in cdc10 cells arrested in G1 but not in tea1 cells. This suggests that cells that contain intact cell end markers are competent to undergo NETO throughout interphase, and Ssp1 is involved in generating the NETO stimulus by enlarging the actin monomer pool.
Resumo:
The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes.