968 resultados para DENSITY-MATRICES
Resumo:
We report variational calculations, in the hypernetted-chain (HNC)-Fermi-HNC scheme, of one-body density matrices and one-particle momentum distributions for 3He-4He mixtures described by a Jastrow correlated wave function. The 4He condensate fractions and the 3He strength poles are examined and compared with the Monte Carlo available results. The agreement has been found to be very satisfactory. Their density dependence is also studied.
Resumo:
In this work we present the formulas for the calculation of exact three-center electron sharing indices (3c-ESI) and introduce two new approximate expressions for correlated wave functions. The 3c-ESI uses the third-order density, the diagonal of the third-order reduced density matrix, but the approximations suggested in this work only involve natural orbitals and occupancies. In addition, the first calculations of 3c-ESI using Valdemoro's, Nakatsuji's and Mazziotti's approximation for the third-order reduced density matrix are also presented for comparison. Our results on a test set of molecules, including 32 3c-ESI values, prove that the new approximation based on the cubic root of natural occupancies performs the best, yielding absolute errors below 0.07 and an average absolute error of 0.015. Furthemore, this approximation seems to be rather insensitive to the amount of electron correlation present in the system. This newly developed methodology provides a computational inexpensive method to calculate 3c-ESI from correlated wave functions and opens new avenues to approximate high-order reduced density matrices in other contexts, such as the contracted Schrödinger equation and the anti-Hermitian contracted Schrödinger equation
Resumo:
We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of Jozsa's axioms. The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.
Resumo:
The existence of quantum correlation (as revealed by quantum discord), other than entanglement and its role in quantum-information processing (QIP), is a current subject for discussion. In particular, it has been suggested that this nonclassical correlation may provide computational speedup for some quantum algorithms. In this regard, bulk nuclear magnetic resonance (NMR) has been successfully used as a test bench for many QIP implementations, although it has also been continuously criticized for not presenting entanglement in most of the systems used so far. In this paper, we report a theoretical and experimental study on the dynamics of quantum and classical correlations in an NMR quadrupolar system. We present a method for computing the correlations from experimental NMR deviation-density matrices and show that, given the action of the nuclear-spin environment, the relaxation produces a monotonic time decay in the correlations. Although the experimental realizations were performed in a specific quadrupolar system, the main results presented here can be applied to whichever system uses a deviation-density matrix formalism.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
A remarkable feature of quantum entanglement is that an entangled state of two parties, Alice (A) and Bob (B), may be more disordered locally than globally. That is, S(A) > S(A, B), where S() is the von Neumann entropy. It is known that satisfaction of this inequality implies that a state is nonseparable. In this paper we prove the stronger result that for separable states the vector of eigenvalues of the density matrix of system AB is majorized by the vector of eigenvalues of the density matrix of system A alone. This gives a strong sense in which a separable state is more disordered globally than locally and a new necessary condition for separability of bipartite states in arbitrary dimensions.
Resumo:
We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems (qubits). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices that are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.
Resumo:
Cilengitide is a high-affinity cyclic pentapeptdic alphaV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through alphaVbeta3/alphaVbeta5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the beta1 family, and little is known on the effect of cilengitide on endothelial cells expressing alphaVbeta3 but adhering through beta1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on alphaVbeta3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the beta1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface alphaVbeta3, stimulated phosphorylation of FAK (Y(397) and Y(576/577)), Src (S(418)) and VE-cadherin (Y(658) and Y(731)), redistributed alphaVbeta3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density beta1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of alphaVbeta3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.
Resumo:
NMR quantum information processing studies rely on the reconstruction of the density matrix representing the so-called pseudo-pure states (PPS). An initially pure part of a PPS state undergoes unitary and non-unitary (relaxation) transformations during a computation process, causing a ""loss of purity"" until the equilibrium is reached. Besides, upon relaxation, the nuclear polarization varies in time, a fact which must be taken into account when comparing density matrices at different instants. Attempting to use time-fixed normalization procedures when relaxation is present, leads to various anomalies on matrices populations. On this paper we propose a method which takes into account the time-dependence of the normalization factor. From a generic form for the deviation density matrix an expression for the relaxing initial pure state is deduced. The method is exemplified with an experiment of relaxation of the concurrence of a pseudo-entangled state, which exhibits the phenomenon of sudden death, and the relaxation of the Wigner function of a pseudo-cat state.
Resumo:
We show that for any multivariate I( 1) process which does not cointegrate, it is possible to find another process sufficient1y elose to it where cointegration applies. Closeness is defined in terms of the spectral density matrices of the respective processes in differences, i.e., a metric which takes into account only the information in the (centred) second moments. The result may explain why in practice cointegration is found a bit "too often". Examples developing this point and simulations giving an insight on the metric used are also presented.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is known that quantum discord might experience a sudden transition in its dynamics when calculated for certain Bell-diagonal states (BDS) that are in interaction with their surroundings. We examine this phenomenon, known as the sudden change of quantum discord, considering the case of two qubits independently interacting with dephasing reservoirs. We first demonstrate that, for a class of initial states which can be chosen arbitrarily close to BDS, the transition is in fact not sudden, although it might numerically appear so if not studied carefully. Then, we provide an extension of this discussion covering the X-shaped density matrices. Our findings suggest that the transition of quantum discord might be sudden only for an highly idealized zero-measure subset of states within the set of all possible initial conditions of two qubits. © 2013 American Physical Society.
Resumo:
We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
For every possible spectrum of 2(N)-dimensional density operators, we construct an N-qubit X-state of the same spectrum and maximal genuine multipartite (GM-) concurrence, hence characterizing a global unitary transformation that -constrained to output X-states-maximizes the GM-concurrence of an arbitrary input mixed state of N qubits. We also apply semidefinite programming methods to obtain N-qubit X-states with maximal GM-concurrence for a given purity and to provide an alternative proof of optimality of a recently proposed set of density matrices for the purpose, the so-called X-MEMS. Furthermore, we introduce a numerical strategy to tailor a quantum operation that converts between any two given density matrices using a relatively small number of Kraus operators. We apply our strategy to design short operator-sum representations for the transformation between any given N-qubit mixed state and a corresponding X-MEMS of the same purity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)