996 resultados para DELAYED HYPERSENSITIVITY REACTIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density and distribution of T cells, T helper cells, macrophages and B cells at the site of skin tests with a cytoplasmic Paracoccidioides brasiliensis antigen (paracoccidioidin) was studied at 24 and 48 h post-challenge in 10 patients with the chronic form of paracoccidioidomycosis and in 5 noninfected individuals. The in situ study was carried out using immunoperoxidase techniques and monoclonal antibodies. The controls showed negative skin test. In the patients, the great majority of the cells in the perivascular foci were T cells (CD43-positive cells) making up 47% and 48.6% of the total number of cells at 24 and 48 h respectively. Most of the T cells showed a T helper phenotype (CD45RO-positive cells). Approximately 25% of the cells were macrophages (CD68-positive cells) and there were very few B lymphocytes (CD20-positive cells). The present data on the microanatomy of paracoccidioidin skin test sites were consistent with a delayed type hypersensitivity pattern. Our results were comparable to those reported on skin tests for other granulomatous chronic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune reactions to drugs can cause a variety of diseases involving the skin, liver, kidney, lungs, and other organs. Beside immediate, IgE-mediated reactions of varying degrees (urticaria to anaphylactic shock), many drug hypersensitivity reactions appear delayed, namely hours to days after starting drug treatment, showing a variety of clinical manifestations from solely skin involvement to fulminant systemic diseases which may be fatal. Immunohistochemical and functional studies of drug-specific T cells in patients with delayed reactions confirmed a predominant role for T cells in the onset and maintenance of immune-mediated delayed drug hypersensitivity reactions (type IV reactions). In these reactions, drug-specific CD4+ and CD8+ T cells are stimulated by drugs through their T cell receptors (TCR). Drugs can stimulate T cells in two ways: they can act as haptens and bind covalently to larger protein structures (hapten-carrier model), inducing a specific immune response. In addition, they may accidentally bind in a labile, noncovalent way to a particular TCR of the whole TCR repertoire and possibly also major histocompatibility complex (MHC)-molecules - similar to their pharmacologic action. This seems to be sufficient to reactivate certain, probably in vivo preactivated T cells, if an additional interaction of the drug-stimulated TCR with MHC molecules occurs. The mechanism was named pharmacological interaction of a drug with (immune) receptor and thus termed the p-i concept. This new concept may explain the frequent skin symptoms in drug hypersensitivity to oral or parenteral drugs. Furthermore, the various clinical manifestations of T cell-mediated drug hypersensitivity may be explained by distinct T cell functions leading to different clinical phenotypes. These data allowed a subclassification of the delayed hypersensitivity reactions (type IV) into T cell reactions which, by releasing certain cytokines and chemokines, preferentially activate and recruit monocytes (type IVa), eosinophils (type IVb), or neutrophils (type IVd).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Drug-reactive T cells are involved in most drug-induced hypersensitivity reactions. The frequency of such cells in peripheral blood of patients with drug allergy after remission is unclear. OBJECTIVE: We determined the frequency of drug-reactive T cells in the peripheral blood of patients 4 months to 12 years after severe delayed-type drug hypersensitivity reactions, and whether the frequency of these cell differs from the frequency of tetanus toxoid-reactive T cells. METHODS: We analyzed 5 patients with delayed-type drug hypersensitivity reactions, applying 2 methods: quantification of cytokine-secreting T cells by enzyme-linked immunospot (ELISpot), and fluorescent dye 5,6-carboxylfluorescein diacetate succinimidyl ester (CFSE) intensity distribution analysis of drug-reactive T cells. RESULTS: Frequencies found were between 0.02% and 0.4% of CD4(+) T cells reacting to the respective drugs measured by CFSE analysis, and between 0.01% and 0.08% of T cells as determined by ELISpot. Reactivity was seen neither to drugs to which the patients were not sensitized nor in healthy individuals after stimulation with any of the drugs used. CONCLUSION: About 1:250 to 1:10,000 of T cells of patients with drug allergy are reactive to the relevant drugs. This frequency of drug-reactive T cells is higher than the frequency of T cells able to recognize recall antigens like tetanus toxoid in the same subjects. A substantial frequency could be observed as long as 12 years later in 1 patient even after strict drug avoidance. Patients with severe delayed drug hypersensitivity reactions are therefore potentially prone to react again to the incriminated drug even years after strict drug avoidance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article characterizes hypersensitivity reactions during anesthetic-surgical procedures. This integrative literature review was conducted in the LILACS, CINAHL, COCHRANE and MEDLINE databases including papers published from 1966 to September 2011. A total of 17 case reports, two prevalence studies and one cohort study were identified. Latex reactions were mainly type III and the primary source of intraoperative reaction was latex gloves. The average time for clinical manifestation was 59.8 minutes after anesthetic induction; 44.4% of patients reported a reaction to latex at the pre-anesthetic evaluation. It was determined that the history of allergic reactions to latex obtained in the pre-anesthetic evaluation does not ensure the safety of patients if the staff is inattentive to the severity of the issue. There is also a tendency to initially attribute the anaphylactic event to the anesthetic drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotics are used extensively in the treatment of various infections. Consequently, they can be considered among the most important agents involved in adverse reactions to drugs, including both allergic and non-allergic drug hypersensitivity [J Allergy Clin Immunol 113:832–836, 2004]. Most studies published to date deal mainly with reactions to the beta-lactam group, and information on hypersensitivity to each of the other antimicrobial agents is scarce. The present document has been produced by the Special Committee on Drug Allergy of the World Allergy Organization to present the most relevant information on the incidence, clinical manifestations, diagnosis, possible mechanisms, and management of hypersensitivity reactions to non beta-lactam antimicrobials for use by practitioners worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfonamides are generally classified into 2 groups: antibiotics and non-antibiotics. Recent studies showed that patients allergic to sulfonamide antibiotics do not have a specific risk for an allergy to sulfonamide non-antibiotic. However, the anti-inflammatory drug sulfasalazine represents an important exception. Used in rheumatic diseases, it is classified as a non-antibiotic sulfonamide, but is structurally related to antibiotic sulfonamides. Therefore, we aimed to analyze in vitro the cross-reactivity between the antimicrobial sulfamethoxazole and the anti-inflammatory drug sulfasalazine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug hypersensitivity research has progressed enormously in recent years, and a greater understanding of mechanisms has contributed to improved drug safety. Progress has been made in genetics, enabling personalized medicine for certain drugs, and in understanding drug interactions with the immune system. In a recent meeting in Rome, the clinical, chemical, pharmacologic, immunologic, and genetic aspects of drug hypersensitivity were discussed, and certain aspects are briefly summarized here. Small chemicals, including drugs, can induce immune reactions by binding as a hapten to a carrier protein. Park (Liverpool, England) demonstrated (1) that drug haptens bind to protein in patients in a highly restricted manner and (2) that irreversibly modified carrier proteins are able to stimulate CD4(+) and CD8(+) T cells from hypersensitive patients. Drug haptens might also stimulate cells of the innate immune system, in particular dendritic cells, and thus give rise to a complex and complete immune reaction. Many drugs do not have hapten-like characteristics but might gain them on metabolism (so-called prohaptens). The group of Naisbitt found that the stimulation of dendritic cells and T cells can occur as a consequence of the transformation of a prohapten to a hapten in antigen-presenting cells and as such explain the immune-stimulatory capacity of prohaptens. The striking association between HLA-B alleles and the development of certain drug reactions was discussed in detail. Mallal (Perth, Australia) elegantly described a highly restricted HLA-B∗5701-specific T-cell response in abacavir-hypersensitive patients and healthy volunteers expressing HLA-B∗5701 but not closely related alleles. Expression of HLA-B∗1502 is a marker known to be necessary but not sufficient to predict carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in Han Chinese. The group of Chen and Hong (Taiwan) described the possible "missing link" because they showed that the presence of certain T-cell receptor (TCR) clonotypes was necessary to elicit T-cell responses to carbamazepine. The role of TCRs in drug binding was also emphasized by Pichler (Bern, Switzerland). Following up on their "pharmacological interactions of drugs with immune receptors" concept (p-i concept), namely that drugs can bind directly to TCRs, MHC molecules, or both and thereby stimulate T cells, they looked for drug-binding sites for the drug sulfamethoxazole in drug-specific TCRs: modeling revealed up to 7 binding sites on the CDR3 and CDR2 regions of TCR Vα and Vβ. Among many other presentations, the important role of regulatory T cells in drug hypersensitivity was addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbamazepine causes various forms of hypersensitivity reactions, ranging from maculopapular exanthema to severe blistering reactions. The HLA-B*1502 allele has been shown to be strongly correlated with carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN) in the Han Chinese and other Asian populations but not in European populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the colonoscopic allergen provocation (COLAP) test as a new tool for the diagnosis of IgE-mediated food allergy. METHODS: Oral food challenges as well as COLAP testing were performed in a colony of nine research dogs with proven immediate-type food allergic reactions. In addition, COLAP was performed in five healthy dogs. RESULTS: When compared with the oral challenge test, COLAP accurately determined 18 of 23 (73 per cent) positive oral challenge reactions (73 per cent) in dogs with food allergies and was negative in the healthy dogs. CLINICAL SIGNIFICANCE: The accuracy of this new test may be higher than that for gastric sensitivity testing. Therefore, COLAP holds promise as a new test to confirm the diagnosis of suspect IgE-mediated food allergy in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-induced hypersensitivity reactions are instructive examples of immune reactions against low molecular weight compounds. Classically, such reactions have been explained by the hapten concept, according to which the small antigen covalently modifies an endogenous protein; recent studies show strong associations of several HLA molecules with hypersensitivity. In recent years, however, evidence has become stronger that not all drugs need to bind covalently to the major histocompatibility complex (MHC)-peptide complex in order to trigger an immune response. Rather, some drugs may bind reversibly to the MHC or possibly to the T-cell receptor (TCR), eliciting immune reactions akin to the pharmacological activation of other receptors. While the exact mechanism is still a matter of debate, noncovalent drug presentation clearly leads to the activation of drug-specific T cells. In some patients with hypersensitivity, such a response may occur within hours of even the first exposure to the drug. Thus, the reaction to the drug may not be the result of a classical, primary response but rather be mediated by existing, preactivated T cells that display cross-reactivity for the drug and have additional (peptide) specificity as well. In this way, certain drugs may circumvent the checkpoints for immune activation imposed by the classical antigen processing and presentation mechanisms, which may help to explain the idiosyncratic nature of many drug hypersensitivity reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quinolones are one of the most important classes of antimicrobial agents discovered in the recent years and one of the most widely used classes of antibiotics in clinical medicine. Their broad spectrum of activity and pharmacokinetic properties make them ideal agents for treating a variety of infections. Their clinical importance is further demonstrated by their activity against a wide range of diseases of public health importance such as anthrax, tuberculosis, bacterial pneumonia, and sexually transmitted diseases. Like other antibiotics, quinolones can cause various, sometimes dangerous hypersensitivity reactions. The underlying pathomechanisms are only poorly understood. Some are thought to be partly non-immune mediated reactions, others are considered to be IgE- or T cell-mediated reactions. This review gives an insight into the different immunological mechanisms leading to the diverse symptoms of quinolone-induced hypersensitivity reactions, with special emphasis on the role of T cells in such reactions.