919 resultados para DELAYED ENHANCEMENT


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background-Endocardial fibrous tissue (FT) deposition is a hallmark of endomyocardial fibrosis (EMF). Echocardiography is a first-line and the standard technique for the diagnosis of this disease. Although late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) allows FT characterization, its role in the diagnosis and prognosis of EMF has not been investigated. Methods and Results-Thirty-six patients (29 women; age, 54 +/- 12 years) with EMF diagnosis after clinical evaluation and comprehensive 2-dimensional Doppler echocardiography underwent cine-CMR for assessing ventricular volumes, ejection fraction and mass, and LGE-CMR for FT characterization and quantification. Indexed FT volume (FT/body surface area) was calculated after planimetry of the 8 to 12 slices obtained in the short-axis view at end-diastole (mL/m(2)). Surgical resection of FT was performed in 16 patients. In all patients, areas of LGE were confined to the endocardium, frequently as a continuous streak from the inflow tract extending to the apex, where it was usually most prominent. There was a relation between increased FT/body surface area and worse New York Heart Association functional class and with increased probability of surgery (P<0.05). The histopathologic examination of resected FT showed typical features of EMF with extensive endocardial fibrous thickening, proliferation of small vessels, and scarce inflammatory infiltrate. In multivariate analysis, the patients with FT/body surface area >19 mL/m(2) had an increased mortality rate, with a relative risk of 10.8. Conclusions-Our study provides evidence that LGE-CMR is useful in the diagnosis and prognosis of EMF through quantification of the typical pattern of FT deposition. (Circ Cardiovasc Imaging. 2011;4:304-311.)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Delayed enhancement (DE) MRI can assess the fibrotic substrate of scar-related VT. MDCT has the advantage of inframillimetric spatial resolution and better 3D reconstructions. We sought to evaluate the feasibility and usefulness of integrating merged MDCT/MRI data in 3D-mapping systems for structure-function assessment and multimodal guidance of VT mapping and ablation. METHODS Nine patients, including 3 ischemic cardiomyopathy (ICM), 3 nonischemic cardiomyopathy (NICM), 2 myocarditis, and 1 redo procedure for idiopathic VT, underwent MRI and MDCT before VT ablation. Merged MRI/MDCT data were integrated in 3D-mapping systems and registered to high-density endocardial and epicardial maps. Low-voltage areas (<1.5 mV) and local abnormal ventricular activities (LAVA) during sinus rhythm were correlated to DE at MRI, and wall-thinning (WT) at MDCT. RESULTS Endocardium and epicardium were mapped with 391 ± 388 and 1098 ± 734 points per map, respectively. Registration of MDCT allowed visualization of coronary arteries during epicardial mapping/ablation. In the idiopathic patient, integration of MRI data identified previously ablated regions. In ICM patients, both DE at MRI and WT at MDCT matched areas of low voltage (overlap 94 ± 6% and 79 ± 5%, respectively). In NICM patients, wall-thinning areas matched areas of low voltage (overlap 63 ± 21%). In patients with myocarditis, subepicardial DE matched areas of epicardial low voltage (overlap 92 ± 12%). A total number of 266 LAVA sites were found in 7/9 patients. All LAVA sites were associated to structural substrate at imaging (90% inside, 100% within 18 mm). CONCLUSION The integration of merged MDCT and DEMRI data is feasible and allows combining substrate assessment with high-spatial resolution to better define structure-function relationship in scar-related VT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives We sought to determine whether the quantitative assessment of myocardial fibrosis (MF), either by histopathology or by contrast-enhanced magnetic resonance imaging (ce-MRI), could help predict long-term survival after aortic valve replacement. Background Severe aortic valve disease is characterized by progressive accumulation of interstitial MF. Methods Fifty-four patients scheduled to undergo aortic valve replacement were examined by ce-MRI. Delayed-enhanced images were used for the quantitative assessment of MF. In addition, interstitial MF was quantified by histological analysis of myocardial samples obtained during open-heart surgery and stained with picrosirius red. The ce-MRI study was repeated 27 +/- 22 months after surgery to assess left ventricular functional improvement, and all patients were followed for 52 +/- 17 months to evaluate long-term survival. Results There was a good correlation between the amount of MF measured by histopathology and by ce-MRI (r = 0.69, p < 0.001). In addition, the amount of MF demonstrated a significant inverse correlation with the degree of left ventricular functional improvement after surgery (r = -0.42, p = 0.04 for histopathology; r = -0.47, p = 0.02 for ce-MRI). Kaplan-Meier analyses revealed that higher degrees of MF accumulation were associated with worse long-term survival (chi-square = 6.32, p = 0.01 for histopathology; chi-square = 5.85, p = 0.02 for ce-MRI). On multivariate Cox regression analyses, patient age and the amount of MF were found to be independent predictors of all-cause mortality. Conclusions The amount of MF, either by histopathology or by ce-MRI, is associated with the degree of left ventricular functional improvement and all-cause mortality late after aortic valve replacement in patients with severe aortic valve disease. (J Am Coll Cardiol 2010; 56: 278-87) (c) 2010 by the American College of Cardiology Foundation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE. The purposes of this study were to use the myocardial delayed enhancement technique of cardiac MRI to investigate the frequency of unrecognized myocardial infarction (MI) in patients with end-stage renal disease, to compare the findings with those of ECG and SPECT, and to examine factors that may influence the utility of these methods in the detection of MI. SUBJECTS AND METHODS. We prospectively performed cardiac MRI, ECG, and SPECT to detect unrecognized MI in 72 patients with end-stage renal disease at high risk of coronary artery disease but without a clinical history of MI. RESULTS. Fifty-six patients (78%) were men ( mean age, 56.2 +/- 9.4 years) and 16 (22%) were women ( mean age, 55.8 +/- 11.4). The mean left ventricular mass index was 103.4 +/- 27.3 g/m(2), and the mean ejection fraction was 60.6% +/- 15.5%. Myocardial delayed enhancement imaging depicted unrecognized MI in 18 patients (25%). ECG findings were abnormal in five patients (7%), and SPECT findings were abnormal in 19 patients (26%). ECG findings were false-negative in 14 cases and false-positive in one case. The accuracy, sensitivity, and specificity of ECG were 79.2%, 22.2%, and 98.1% (p = 0.002). SPECT findings were false-negative in six cases and false-positive in seven cases. The accuracy, sensitivity, and specificity of SPECT were 81.9%, 66.7%, and 87.0% ( not significant). During a period of 4.9-77.9 months, 19 cardiac deaths were documented, but no statistical significance was found in survival analysis. CONCLUSION. Cardiac MRI with myocardial delayed enhancement can depict unrecognized MI in patients with end-stage renal disease. ECG and SPECT had low sensitivity in detection of MI. Infarct size and left ventricular mass can influence the utility of these methods in the detection of MI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Chronic aortic valve disease (AVD) is characterized by progressive accumulation of interstitial myocardial fibrosis (MF). However, assessment of MF accumulation has only been possible through histologic analyses of endomyocardial biopsies. We sought to evaluate contrast-enhanced magnetic resonance imaging (ce-MRI) as a noninvasive method to identify the presence of increased MF in patients with severe AVD. Methods Seventy patients scheduled to undergo aortic valve replacement surgery were examined by cine and ce-MRI in a 1.5-T scanner. Cine images were used for the assessment of left ventricular (LV) volumes, mass, and function. Delayed-enhancement images were used to characterize the regions of MF. In addition, histologic analyses of myocardial samples obtained during aortic valve replacement surgery were used for direct quantification of interstitial MF. Ten additional subjects who died of noncardiac causes served as controls for the quantitative histologic analyses. Results Interstitial MF determined by histopathologic analysis was higher in patients with AVID than in controls (2.7% +/- 2.0% vs 0.6% +/- 0.2%, P =.001). When compared with histopathologic results, ce-MRI demonstrated a sensitivity of 74%, a specificity of 81%, and an accuracy of 76% to identify AVD patients with increased interstitial MF There was a significant inverse correlation between interstitial MF and LV ejection fraction (r = -0.67, P <.0001). Accordingly, patients with identifiable focal regions of MF by ce-MRI exhibited worse LV systolic function than those without MF (45% +/- 14% vs 65% +/- 14%, P <.0001). Conclusions Contrast-enhanced MRI allows for the noninvasive detection of focal regions of MF in patients with severe AVD. Moreover, patients with identifiable MF by ce-MRI exhibited worse LV functional parameters. (Am Heart J 2009; 157:361-8.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A distinção entre miocárdio atordoado e danificado tem sido uma preocupação relevante, no cenário de um enfarte agudo do miocárdio (EAM). A avaliação da viabilidade do miocárdio, pós-enfarte, é de importância vital, no contexto clínico, principalmente numa fase inicial. Actualmente a Ressonância Magnética Cardíaca é o exame de referência para a avaliação de viabilidade do miocárdio. No entanto, é um exame com elevado custo e de difícil acesso. Estudos preliminares demonstraram potencial na utilização de imagens por Tomografia Computorizada para avaliação da área de enfarte, quer em estudos animais quer em humanos. É objectivo desta tese verificar a utilidade de um protocolo de avaliação de viabilidade do miocárdio, com base em imagens de realce tardio (RT) por Tomografia Computorizada, após um procedimento de intervenção coronária percutânea, no contexto de enfarte agudo do miocárdio com elevação do segmento ST (STEMI). Pretende-se igualmente contribuir para a análise da imagem médica do miocárdio, proporcionando métodos de quantificação do RT e software de suporte à decisão médica nesta modalidade de imagem substancialmente recente. São avaliados vários processos para a quantificação do volume de RT, incluindo um método inovador baseado na detecção automática do miocárdio normal. _E ainda proposto um algoritmo para detecção automática do grau de transmuralidade, por segmento do miocárdio, e comparado o seu grau de eficiência face ao diagnóstico médico dos mesmos exames. Apesar do reduzido número de exames utilizado para validação das técnicas descritas nesta tese, os resultados são bastante promissores e podem constituir uma mais-valia no auxilio à gestão do paciente com EAM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The combination of cardiac viability and functional information enhances the identification of different heart tissues in the setting of ischemic heart disease. A method has recently been proposed for obtaining black-blood delayed-enhancement (DE) viability images using the stimulated-echo acquisition mode (STEAM) MRI pulse sequence in a single short breathhold. The method was validated against conventional inversion-recovery (IR) DE images for identifying regions of myocardial infarction (MI). The method was based on the acquisition of three consecutive images of the same anatomical slice. One image has T(1)-weighted contrast in which infarction appears bright. The two other images are used to construct an anatomical image of the heart, which is combined with the first image to produce a black-blood viability image. However, using appropriate modulation and demodulation frequencies, the latter two images bear useful information about myocardial deformation that results in a cardiac strain-encoding (SENC) functional image. In this work, a method is proposed for obtaining three consecutive SENC images in a single acquisition that can be combined to produce a composite image of the heart, which shows both functional and viability information. The proposed technique reduces scan time by one-half, compared with separate acquisitions of functional and viability images, and alleviates misregistration problems caused by separate breathholds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To determine the frequency and factors associated with the presence of T2 shine-through effect in hepatic hemangiomas on diffusion-weighted (DW) magnetic resonance (MR) sequences. MATERIALS AND METHODS: This retrospective study was approved by institutional review board with waiver of informed consent. One hundred forty-nine consecutive patients with 388 hepatic hemangiomas who underwent a liver MR between January 2010 and November 2011 were included. MR analysis evaluated the lesion characteristics (signal intensities and enhancement patterns (classical, rapidly filling, delayed filling)), the presence of T2 shine-through effect on DW sequences (b values of 0, 150, and 600s/mm(2)), and apparent diffusion coefficient (ADC) values. Multivariate analysis was performed to study the factors associated with the T2 shine-through effect. RESULTS: T2 shine-through effect was observed in 204/388 (52.6%) of hepatic hemangiomas and in 100 (67.1%) patients. Mean ADC value of hemangiomas with T2 shine-through effect was significantly lower than hemangiomas without (2.0±0.48 vs 2.38±0.45, P<.0001). On multivariate analysis, high signal intensity on fat-suppressed T2-weighted fast spin-echo images, hemangiomas with classical or delayed enhancement, and the ADC of the liver were the only significant factors associated with T2 shine-through effect. CONCLUSION: T2 shine-through effect is commonly observed in hepatic hemangiomas and is related to hemangiomas characteristics. Radiologists should be aware of this phenomenon which could lead to misdiagnosis. Its presence should not question the diagnosis of hemangiomas when typical MR findings are found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To implement real-time myocardial strain-encoding (SENC) imaging in combination with tracking the tissue displacement in the through-plane direction. MATERIALS AND METHODS: SENC imaging was combined with the slice-following technique by implementing three-dimensional (3D) selective excitation. Certain adjustments were implemented to reduce scan time to one heartbeat. A total of 10 volunteers and five pigs were scanned on a 3T MRI scanner. Spatial modulation of magnetization (SPAMM)-tagged images were acquired on planes orthogonal to the SENC planes for comparison. Myocardial infarction (MI) was induced in two pigs and the resulting SENC images were compared to standard delayed-enhancement (DE) images. RESULTS: The strain values computed from SENC imaging with slice-following showed significant difference from those acquired without slice-following, especially during systole (P < 0.01). The strain curves computed from the SENC images with and without slice-following were similar to those computed from the orthogonal SPAMM images, with and without, respectively, tracking the tag line displacement in the strain direction. The resulting SENC images showed good agreement with the DE images in identifying MI in infarcted pigs. CONCLUSION: Correction of through-plane motion in real-time cardiac functional imaging is feasible using slice-following. The strain measurements are more accurate than conventional SENC measurements in humans and animals, as validated with conventional MRI tagging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Although the release of cardiac biomarkers after percutaneous (PCI) or surgical revascularization (CABG) is common, its prognostic significance is not known. Questions remain about the mechanisms and degree of correlation between the release, the volume of myocardial tissue loss, and the long-term significance. Delayed-enhancement of cardiac magnetic resonance (CMR) consistently quantifies areas of irreversible myocardial injury. To investigate the quantitative relationship between irreversible injury and cardiac biomarkers, we will evaluate the extent of irreversible injury in patients undergoing PCI and CABG and relate it to postprocedural modifications in cardiac biomarkers and long-term prognosis. Methods/Design: The study will include 150 patients with multivessel coronary artery disease (CAD) with left ventricle ejection fraction (LVEF) and a formal indication for CABG; 50 patients will undergo CABG with cardiopulmonary bypass (CPB); 50 patients with the same arterial and ventricular condition indicated for myocardial revascularization will undergo CABG without CPB; and another 50 patients with CAD and preserved ventricular function will undergo PCI using stents. All patients will undergo CMR before and after surgery or PCI. We will also evaluate the release of cardiac markers of necrosis immediately before and after each procedure. Primary outcome considered is overall death in a 5-year follow-up. Secondary outcomes are levels of CK-MB isoenzyme and I-Troponin in association with presence of myocardial fibrosis and systolic left ventricle dysfunction assessed by CMR. Discussion: The MASS-V Trial aims to establish reliable values for parameters of enzyme markers of myocardial necrosis in the absence of manifest myocardial infarction after mechanical interventions. The establishments of these indices have diagnostic value and clinical prognosis and therefore require relevant and different therapeutic measures. In daily practice, the inappropriate use of these necrosis markers has led to misdiagnosis and therefore wrong treatment. The appearance of a more sensitive tool such as CMR provides an unprecedented diagnostic accuracy of myocardial damage when correlated with necrosis enzyme markers. We aim to correlate laboratory data with imaging, thereby establishing more refined data on the presence or absence of irreversible myocardial injury after the procedure, either percutaneous or surgical, and this, with or without the use of cardiopulmonary bypass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Cocaine is a commonly used illicit drug that leads to the most emergency department (ED) visits. Chest pain is the most common presentation, reported in 40% of patients. Our aim was to evaluate the incidence of previous myocardial infarction among young cocaine users (18-40 years) with cocaine-associated chest pain by the assessment of myocardial fibrosis by cardiovascular MRI. Second, we also intended to evaluate the coronary tree by CT angiography (CTA). Methods: 24 cocaine users (22 males) who frequently complained about cocaine-associated chest pain underwent CTA and cardiovascular MRI. Mean age of patients was 29.7 years and most of them (79%) had frequently used inhalatory cocaine. Results: The calcium score turned out to be positive in only one patient (Agatston=54). Among the coronary segments evaluated, only one patient had calcified plaques at the anterior descending coronary artery (proximal and medium segments). Assessment of regional ventricular function by the evaluation of 17 segments was normal in all patients. None of the patients showed myocardial delayed enhancement, indicative of myocardial fibrosis. CTA therefore confirmed the low cardiovascular risk of these patients, since most of them (96%) had no atherosclerosis detected by this examination. Only one patient (4%) had coronary atherosclerosis detected, without significant coronary stenosis. Conclusion: Cardiovascular MR did not detect the presence of delayed enhancement indicative of myocardial fibrosis among young cocaine users with low cardiovascular risk who had complained of cocaine-associated chest pain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Endocardial fibroelastosis (EFE) is characterized by a diffuse white fibrous tissue lining the endocardium. The diagnosis is difficult to establish because clinical symptoms and electrocardiographic findings are nonspecific. Surgical resection of EFE requires the establishment of the diagnosis and delineation of the extent of the fibrotic changes. OBJECTIVE: To describe the use of MRI in the assessment of EFE in children. MATERIALS AND METHODS: Three children after surgery for aortic stenosis who were suspected of having EFE were evaluated by echocardiography and MRI. The MR evaluation consisted of black-blood, triple IR, bright-blood, perfusion and myocardial delayed-enhancement sequences. EFE was confirmed at surgery in all patients. RESULTS: Echocardiograms demonstrated vigorous systolic function but substantial diastolic dysfunction of the left ventricle in all. Mild endocardial brightening of the anterior septum, anterior wall, or papillary muscles was present in two. No study was thought to be diagnostic of endocardial fibrosis. On MRI EFE manifested at the endocardial surface as a rim of hypointense signal in the perfusion sequences and as a rim of hyperintense signal in the myocardial delayed-enhancement sequences. The black-blood, triple IR, and bright-blood sequences were not diagnostic. CONCLUSION: The diagnosis of EFE is difficult to establish by echocardiography. MRI using perfusion and myocardial delayed enhancement can be useful in establishing the diagnosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES This study sought to evaluate the relationship between fibrosis imaged by delayed-enhancement (DE) magnetic resonance imaging (MRI) and atrial electrograms (Egms) in persistent atrial fibrillation (AF). BACKGROUND Atrial fractionated Egms are strongly related to slow anisotropic conduction. Their relationship to atrial fibrosis has not yet been investigated. METHODS Atrial high-resolution MRI of 18 patients with persistent AF (11 long-lasting persistent AF) was registered with mapping geometry (NavX electro-anatomical system (version 8.0, St. Jude Medical, St. Paul, Minnesota)). DE areas were categorized as dense or patchy, depending on their DE content. Left atrial Egms during AF were acquired using a high-density, 20-pole catheter (514 ± 77 sites/map). Fractionation, organization/regularity, local mean cycle length (CL), and voltage were analyzed with regard to DE. RESULTS Patients with long-lasting persistent versus persistent AF had larger left atrial (LA) surface area (134 ± 38 cm(2) vs. 98 ± 9 cm(2), p = 0.02), a higher amount of atrial DE (70 ± 16 cm(2) vs. 49 ± 10 cm(2), p = 0.01), more complex fractionated atrial Egm (CFAE) extent (54 ± 16 cm(2) vs. 28 ± 15 cm(2), p = 0.02), and a shorter baseline AF CL (147 ± 10 ms vs. 182 ± 14 ms, p = 0.01). Continuous CFAE (CFEmean [NavX algorithm that quantifies Egm fractionation] <80 ms) occupied 38 ± 19% of total LA surface area. Dense DE was detected at the left posterior left atrium. In contrast, the right posterior left atrium contained predominantly patchy DE. Most CFAE (48 ± 14%) occurred at non-DE LA sites, followed by 41 ± 12% CFAE at patchy DE and 11 ± 6% at dense DE regions (p = 0.005 and p = 0.008, respectively); 19 ± 6% CFAE sites occurred at border zones of dense DE. Egms were less fractionated, with longer CL and lower voltage at dense DE versus non-DE regions: CFEmean: 97 ms versus 76 ms, p < 0.0001; local CL: 153 ms versus 143 ms, p < 0.0001; mean voltage: 0.63 mV versus 0.86 mV, p < 0.0001. CONCLUSIONS Atrial fibrosis as defined by DE MRI is associated with slower and more organized electrical activity but with lower voltage than healthy atrial areas. Ninety percent of continuous CFAE sites occur at non-DE and patchy DE LA sites. These findings are important when choosing the ablation strategy in persistent AF.