3 resultados para DEHYDRIDING


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dehydriding and rehydriding of sodium aluminium hydride, NaAlR4, is kinetically enhanced and rendered reversible in the solid state upon doping with a small amount of catalyst species, such as titanium, zirconium or tin. The catalyst doped hydrides appear to be good candidates for development as hydrogen carriers for onboard proton exchange membrane (PEM) fuel cells because of their relatively low operation temperatures (120-150 degrees C) and high hydrogen carrying capacities (4-5 wt.%). However, the nature of the active catalyst species and the mechanism of catalytic action are not yet known. In particular, using combinations of Ti and Sri compounds as dopants, a cooperative catalyst effect of the metals Ti and Sn in enhancing the hydrogen uptake and release kinetics is hereby reported. In this paper, characterization techniques including XRD, XPS, TEM, EDS and SEM have been applied on this material. The results suggest that the solid state phase changes during the hydriding and dehydriding processes are assisted through the interaction of a surface catalyst. A mechanism is proposed to explain the catalytic effect of the Sn/Ti double dopants on this hydride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-purity niobium powders can be obtained from the well-known hydride-dehydride (HDH) process. The aim of this work was the investigation of the structural phase transition of the niobium hydride to niobium metal as function of temperature, heating rate and time. The niobium powder used in this work was obtained by high-temperature hydriding of niobium machining chips followed by conventional ball milling and sieving. X-ray diffraction measurements were carried out in vacuum using a high-temperature chamber coupled to an X-ray diffractometer. During the dehydriding process, it is possible to follow the phase transition from niobium hydride to niobium metal starting at about 380 degrees C for a heating rate of 20 degrees C/min. The heating rate was found to be an important parameter, since complete dehydriding was obtained at 490 degrees C for a heating rate of 20 degrees C/min. The higher dehydriding rate was found at 500 degrees C. Results contribute to a better understanding of the kinetics of thermal decomposition of niobium hydride to niobium metal. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various Mg/carbon and Mg/noncarbon composite systems were prepared by mechanical milling and their hydrogen storage behaviors were investigated. It was found that all the carbon additives exhibited prominent advantage over the noncarbon additives, such as BN nanotubes (BNNTs) or asbestos in improving the hydrogen capacity and dehydriding/hydriding kinetics of Mg. And among the various carbon additives, purified single-walled carbon nanotubes (SWNTs) exhibited the most prominent catalytic effect on the hydrogen storage properties of Mg. The hydrogen capacities of all Mg/C composites at 573 K reached more than 6.2 wt.% within 10 min, about 1.5 wt.% higher than that of pure MgH2 at the identical operation conditions. Under certain operation temperatures, H-absorption/desorption rates of Mg/carbon systems were over one order of magnitude higher than that of pure Mg. Furthermore, the starting temperature of the desorption reaction of MgH2 has been lowered to 60 K by adding SWNTs. On the basis of the hydrogen storage behavior and structure/phase investigations, the possible mechanism involved in the property improvement of Mg upon adding carbon materials was discussed. (c) 2005 Elsevier B.V. All rights reserved.