705 resultados para DEFLATIONARY COSMOLOGY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of a possible nonzero chemical potential mu on the nature of dark energy is investigated by assuming that the dark energy is a relativistic perfect simple fluid obeying the equation of state, p=omega rho (omega < 0, constant). The entropy condition, S >= 0, implies that the possible values of omega are heavily dependent on the magnitude, as well as on the sign of the chemical potential. For mu > 0, the omega parameter must be greater than -1 (vacuum is forbidden) while for mu < 0 not only the vacuum but even a phantomlike behavior (omega <-1) is allowed. In any case, the ratio between the chemical potential and temperature remains constant, that is, mu/T=mu(0)/T(0). Assuming that the dark energy constituents have either a bosonic or fermionic nature, the general form of the spectrum is also proposed. For bosons mu is always negative and the extended Wien's law allows only a dark component with omega <-1/2, which includes vacuum and the phantomlike cases. The same happens in the fermionic branch for mu < 0. However, fermionic particles with mu > 0 are permitted only if -1

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinematic approach to cosmological tests provides direct evidence to the present accelerating stage of the Universe that does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q(0)+q(1)z, where q(0) and q(1) are arbitrary constants to be constrained by the union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q(0),q(1))=(-0.73,1.5) whereas the transition redshift is z(t)=0.49(-0.07)(+0.14)(1 sigma) +0.54-0.12(2 sigma). This kinematic result is in agreement with some independent analyses and more easily accommodates many dynamical flat models (like Lambda CDM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The viability of two different classes of Lambda(t)CDM cosmologies is tested by using the APM 08279+5255, an old quasar at redshift z = 3.91. In the first class of models, the cosmological term scales as Lambda(t) similar to R(-n). The particular case n = 0 describes the standard Lambda CDM model whereas n = 2 stands for the Chen and Wu model. For an estimated age of 2 Gyr, it is found that the power index has a lower limit n > 0.21, whereas for 3 Gyr the limit is n > 0.6. Since n can not be so large as similar to 0.81, the Lambda CDM and Chen and Wu models are also ruled out by this analysis. The second class of models is the one recently proposed by Wang and Meng which describes several Lambda(t)CDM cosmologies discussed in the literature. By assuming that the true age is 2 Gyr it is found that the epsilon parameter satisfies the lower bound epsilon > 0.11 while for 3 Gyr, a lower limit of epsilon > 0.52 is obtained. Such limits are slightly modified when the baryonic component is included.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The conditions under which cosmologies driven by time-varying cosmological terms can be described by a scalar field coupled to a perfect fluid are discussed. An algorithm to reconstruct potentials dynamically and thermodynamically analogous to given phenomenological λ models is presented. As a working example, the deflationary cosmology which evolves from a pure de Sitter vacuum state to a slightly modified Friedmann-Robertson-Walker cosmology is considered. It is found that this is an example of nonsingular warm inflation with an asymptotic exponential potential. Differences with respect to other scalar field descriptions of decaying vacuum cosmologies are addressed and possible extensions are indicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (Lambda CDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard Lambda CDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by rho(I)/rho(f) = (H-I/H-f)(2) similar to 10(122), a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Lambda growth index, gamma(Lambda) similar or equal to 6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a chi(2) statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A component of dark energy has been recently proposed to explain the current acceleration of the Universe. Unless some unknown symmetry in Nature prevents or suppresses it, such a field may interact with the pressureless component of dark matter, giving rise to the so-called models of coupled quintessence. In this paper we propose a new cosmological scenario where radiation and baryons are conserved, while the dark energy component is decaying into cold dark matter. The dilution of cold dark matter particles, attenuated with respect to the usual a(-3) scaling due to the interacting process, is characterized by a positive parameter epsilon, whereas the dark energy satisfies the equation of state p(x) = omega rho(x) (omega < 0). We carry out a joint statistical analysis involving recent observations from type Ia supernovae, baryon acoustic oscillation peak, and cosmic microwave background shift parameter to check the observational viability of the coupled quintessence scenario here proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

José Plínio Baptista School of Cosmology (1. : 2012 : Anchieta, ES). Seminário realizado no período de 14 a 19 de outubro de 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The necessary information to distinguish a local inhomogeneous mass density field from its spatial average on a compact domain of the universe can be measured by relative information entropy. The Kullback-Leibler (KL) formula arises very naturally in this context, however, it provides a very complicated way to compute the mutual information between spatially separated but causally connected regions of the universe in a realistic, inhomogeneous model. To circumvent this issue, by considering a parametric extension of the KL measure, we develop a simple model to describe the mutual information which is entangled via the gravitational field equations. We show that the Tsallis relative entropy can be a good approximation in the case of small inhomogeneities, and for measuring the independent relative information inside the domain, we propose the R\'enyi relative entropy formula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties and cosmological importance of a class of non-topological solitons, Q-balls, are studied. Aspects of Q-ball solutions and Q-ball cosmology discussed in the literature are reviewed. Q-balls are particularly considered in the Minimal Supersymmetric Standard Model with supersymmetry broken by a hidden sector mechanism mediated by either gravity or gauge interactions. Q-ball profiles, charge-energy relations and evaporation rates for realistic Q-ball profiles are calculated for general polynomial potentials and for the gravity mediated scenario. In all of the cases, the evaporation rates are found to increase with decreasing charge. Q-ball collisions are studied by numerical means in the two supersymmetry breaking scenarios. It is noted that the collision processes can be divided into three types: fusion, charge transfer and elastic scattering. Cross-sections are calculated for the different types of processes in the different scenarios. The formation of Q-balls from the fragmentation of the Aflieck-Dine -condensate is studied by numerical and analytical means. The charge distribution is found to depend strongly on the initial energy-charge ratio of the condensate. The final state is typically noted to consist of Q- and anti-Q-balls in a state of maximum entropy. By studying the relaxation of excited Q-balls the rate at which excess energy can be emitted is calculated in the gravity mediated scenario. The Q-ball is also found to withstand excess energy well without significant charge loss. The possible cosmological consequences of these Q-ball properties are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine in detail the implementation, with its associated difficulties, of the Killing conditions and gauge fixing into the variational principle formulation of Bianchi-type cosmologies. We address problems raised in the literature concerning the Lagrangian and the Hamiltonian formulations: We prove their equivalence, make clear the role of the homogeneity preserving diffeomorphisms in the phase space approach, and show that the number of physical degrees of freedom is the same in the Hamiltonian and Lagrangian formulations. Residual gauge transformations play an important role in our approach, and we suggest that Poincaré transformations for special relativistic systems can be understood as residual gauge transformations. In the Appendixes, we give the general computation of the equations of motion and the Lagrangian for any Bianchi-type vacuum metric and for spatially homogeneous Maxwell fields in a nondynamical background (with zero currents). We also illustrate our counting of degrees of freedom in an appendix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiclassical cosmological model is considered which consists of a closed Friedmann-Robertson-Walker spacetime in the presence of a cosmological constant, which mimics the effect of an inflaton field, and a massless, non-conformally coupled quantum scalar field. We show that the back-reaction of the quantum field, which consists basically of a nonlocal term due to gravitational particle creation and a noise term induced by the quantum fluctuations of the field, are able to drive the cosmological scale factor over the barrier of the classical potential so that if the universe starts near a zero scale factor (initial singularity), it can make the transition to an exponentially expanding de Sitter phase. We compute the probability of this transition and it turns out to be comparable with the probability that the universe tunnels from ``nothing'' into an inflationary stage in quantum cosmology. This suggests that in the presence of matter fields the back-reaction on the spacetime should not be neglected in quantum cosmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent study has suggested that the decorated Bronze Age metalwork of South Scandinavia depicted the path of the sun through the sky during the day and through the sea at night. At different stages in its journey it was accompanied by a horse or a ship. Similar images are found in prehistoric rock art, and this paper argues that, whilst there are important differences between the images in these two media, they also signal some of the same ideas.