942 resultados para DEEP CONVECTIVE CLOUDS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From geostationary satellite observations of equatorial Africa and the equatorial east Atlantic during May and June 2000 we explore the radiative forcing by deep convective cloud systems in these regions. Deep convective clouds (DCCs) are associated with a mean radiative forcing relative to non–deep convective areas of −39 W m−2 over the Atlantic Ocean and of +13 W m−2 over equatorial Africa (±10 W m−2 in both cases). We show that over land the timing of the daily cycle of convection relative to the daily cycle in solar illumination and surface temperature significantly affects the mean radiative forcing by DCCs. Displacement of the daily cycle of DCC coverage by 2 hours changes their overall radiative effect by ∼10 W m−2, with implications for the simulation of the radiative balance in this region. The timing of the minimum DCC cover over land, close to noon local time, means that the mean radiative forcing is nearly maximized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper presents a simple theory for the transformation of non-precipitating, shallow convection into precipitating, deep convective clouds. In order to make the pertinent point a much idealized system is considered, consisting only of shallow and deep convection without large–scale forcing. The transformation is described by an explicit coupling between these two types of convection. Shallow convection moistens and cools the atmosphere, whereas deep convection dries and warms, leading to destabilization and stabilization respectively. Consequently, in their own stand–alone modes, shallow convection perpetually grows, whereas deep convection simply damps: the former never reaches equilibrium, and the latter is never spontaneously generated. Coupling the modes together is the only way to reconcile these undesirable separate tendencies so that the convective system as a whole can remain in a stable periodic state under this idealized setting. Such coupling is a key missing element in current global atmospheric models. The energy–cycle description as originally formulated by Arakawa and Schubert, and presented herein is suitable for direct implementation into models using a mass–flux parameterization, and would alleviate the current problems with the representation of these two types of convection in numerical models. The present theory also provides a pertinent framework for analyzing large–eddy simulations and cloud–resolving modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical model for studying the influences of deep convective cloud systems on photochemistry was developed based on a non-hydrostatic meteorological model and chemistry from a global chemistry transport model. The transport of trace gases, the scavenging of soluble trace gases, and the influences of lightning produced nitrogen oxides (NOx=NO+NO2) on the local ozone-related photochemistry were investigated in a multi-day case study for an oceanic region located in the tropical western Pacific. Model runs considering influences of large scale flows, previously neglected in multi-day cloud resolving and single column model studies of tracer transport, yielded that the influence of the mesoscale subsidence (between clouds) on trace gas transport was considerably overestimated in these studies. The simulated vertical transport and scavenging of highly soluble tracers were found to depend on the initial profiles, reconciling contrasting results from two previous studies. Influences of the modeled uptake of trace gases by hydrometeors in the liquid and the ice phase were studied in some detail for a small number of atmospheric trace gases and novel aspects concerning the role of the retention coefficient (i.e. the fraction of a dissolved trace gas that is retained in the ice phase upon freezing) on the vertical transport of highly soluble gases were illuminated. Including lightning NOx production inside a 500 km 2-D model domain was found to be important for the NOx budget and caused small to moderate changes in the domain averaged ozone concentrations. A number of sensitivity studies yielded that the fraction of lightning associated NOx which was lost through photochemical reactions in the vicinity of the lightning source was considerable, but strongly depended on assumptions about the magnitude and the altitude of the lightning NOx source. In contrast to a suggestion from an earlier study, it was argued that the near zero upper tropospheric ozone mixing ratios which were observed close to the study region were most probably not caused by the formation of NO associated with lightning. Instead, it was argued in agreement with suggestions from other studies that the deep convective transport of ozone-poor air masses from the relatively unpolluted marine boundary layer, which have most likely been advected horizontally over relatively large distances (both before and after encountering deep convection) probably played a role. In particular, it was suggested that the ozone profiles observed during CEPEX (Central Equatorial Pacific Experiment) were strongly influenced by the deep convection and the larger scale flow which are associated with the intra-seasonal oscillation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep convection by pyro-cumulonimbus clouds (pyroCb) can transport large amounts of forest fire smoke into the upper troposphere and lower stratosphere. Here, results from numerical simulations of such deep convective smoke transport are presented. The structure, shape and injection height of the pyroCb simulated for a specific case study are in good agreement with observations. The model results confirm that substantial amounts of smoke are injected into the lower stratosphere. Small-scale mixing processes at the cloud top result in a significant enhancement of smoke injection into the stratosphere. Sensitivity studies show that the release of sensible heat by the fire plays an important role for the dynamics of the pyroCb. Furthermore, the convection is found to be very sensitive to background meteorological conditions. While the abundance of aerosol particles acting as cloud condensation nuclei (CCN) has a strong influence on the microphysical structure of the pyroCb, the CCN effect on the convective dynamics is rather weak. The release of latent heat dominates the overall energy budget of the pyroCb. Since most of the cloud water originates from moisture entrained from the background atmosphere, the fire-released moisture contributes only minor to convection dynamics. Sufficient fire heating, favorable meteorological conditions, and small-scale mixing processes at the cloud top are identified as the key ingredients for troposphere-to-stratosphere transport by pyroCb convection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hochreichende Konvektion über Waldbränden ist eine der intensivsten Formen von atmosphärischer Konvektion. Die extreme Wolkendynamik mit hohen vertikalen Windgeschwindigkeiten (bis 20 m/s) bereits an der Wolkenbasis, hohen Wasserdampfübersättigungen (bis 1%) und die durch das Feuer hohen Anzahlkonzentration von Aerosolpartikeln (bis 100000 cm^-3) bilden einen besonderen Rahmen für Aerosol-Wolken Wechselwirkungen.Ein entscheidender Schritt in der mikrophysikalischen Entwicklung einer konvektiven Wolke ist die Aktivierung von Aerosolpartikeln zu Wolkentropfen. Dieser Aktivierungsprozess bestimmt die anfängliche Anzahl und Größe der Wolkentropfen und kann daher die Entwicklung einer konvektiven Wolke und deren Niederschlagsbildung beeinflussen. Die wichtigsten Faktoren, welche die anfängliche Anzahl und Größe der Wolkentropfen bestimmen, sind die Größe und Hygroskopizität der an der Wolkenbasis verfügbaren Aerosolpartikel sowie die vertikale Windgeschwindigkeit. Um den Einfluss dieser Faktoren unter pyro-konvektiven Bedingungen zu untersuchen, wurden numerische Simulationen mit Hilfe eines Wolkenpaketmodells mit detaillierter spektraler Beschreibung der Wolkenmikrophysik durchgeführt. Diese Ergebnisse können in drei unterschiedliche Bereiche abhängig vom Verhältnis zwischen vertikaler Windgeschwindigkeit und Aerosolanzahlkonzentration (w/NCN) eingeteilt werden: (1) ein durch die Aerosolkonzentration limitierter Bereich (hohes w/NCN), (2) ein durch die vertikale Windgeschwindigkeit limitierter Bereich (niedriges w/NCN) und (3) ein Übergangsbereich (mittleres w/NCN). Die Ergebnisse zeigen, dass die Variabilität der anfänglichen Anzahlkonzentration der Wolkentropfen in (pyro-) konvektiven Wolken hauptsächlich durch die Variabilität der vertikalen Windgeschwindigkeit und der Aerosolkonzentration bestimmt wird. rnUm die mikrophysikalischen Prozesse innerhalb der rauchigen Aufwindregion einer pyrokonvektiven Wolke mit einer detaillierten spektralen Mikrophysik zu untersuchen, wurde das Paketmodel entlang einer Trajektorie innerhalb der Aufwindregion initialisiert. Diese Trajektore wurde durch dreidimensionale Simulationen eines pyro-konvektiven Ereignisses durch das Model ATHAM berechnet. Es zeigt sich, dass die Anzahlkonzentration der Wolkentropfen mit steigender Aerosolkonzentration ansteigt. Auf der anderen Seite verringert sich die Größe der Wolkentropfen mit steigender Aerosolkonzentration. Die Reduzierung der Verbreiterung des Tropfenspektrums stimmt mit den Ergebnissen aus Messungen überein und unterstützt das Konzept der Unterdrückung von Niederschlag in stark verschmutzen Wolken.Mit Hilfe des Models ATHAM wurden die dynamischen und mikrophysikalischen Prozesse von pyro-konvektiven Wolken, aufbauend auf einer realistischen Parametrisierung der Aktivierung von Aerosolpartikeln durch die Ergebnisse der Aktivierungsstudie, mit zwei- und dreidimensionalen Simulationen untersucht. Ein modernes zweimomenten mikrophysikalisches Schema wurde in ATHAM implementiert, um den Einfluss der Anzahlkonzentration von Aerosolpartikeln auf die Entwicklung von idealisierten pyro-konvektiven Wolken in US Standardamtosphären für die mittleren Breiten und den Tropen zu untersuchen. Die Ergebnisse zeigen, dass die Anzahlkonzentration der Aerosolpartikel die Bildung von Regen beeinflusst. Für geringe Aerosolkonzentrationen findet die rasche Regenbildung hauptsächlich durch warme mikrophysikalische Prozesse statt. Für höhere Aerosolkonzentrationen ist die Eisphase wichtiger für die Bildung von Regen. Dies führt zu einem verspäteten Einsetzen von Niederschlag für verunreinigtere Atmosphären. Außerdem wird gezeigt, dass die Zusammensetzung der Eisnukleationspartikel (IN) einen starken Einfluss auf die dynamische und mikrophysikalische Struktur solcher Wolken hat. Bei sehr effizienten IN bildet sich Regen früher. Die Untersuchung zum Einfluss des atmosphärischen Hintergrundprofils zeigt eine geringe Auswirkung der Meteorologie auf die Sensitivität der pyro-konvektiven Wolken auf diernAerosolkonzentration. Zum Abschluss wird gezeigt, dass die durch das Feuer emittierte Hitze einen deutlichen Einfluss auf die Entwicklung und die Wolkenobergrenze von pyro-konvektive Wolken hat. Zusammenfassend kann gesagt werden, dass in dieser Dissertation die Mikrophysik von pyrokonvektiven Wolken mit Hilfe von idealisierten Simulation eines Wolkenpaketmodell mit detaillierte spektraler Mikrophysik und eines 3D Modells mit einem zweimomenten Schema im Detail untersucht wurde. Es wird gezeigt, dass die extremen Bedingungen im Bezug auf die vertikale Windgeschwindigkeiten und Aerosolkonzentrationen einen deutlichen Einfluss auf die Entwicklung von pyro-konvektiven Wolken haben.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the tropical African and neighboring Atlantic region there is a strong contrast in the properties of deep convection between land and ocean. Here, satellite radar observations are used to produce a composite picture of the life cycle of convection in these two regions. Estimates of the broadband thermal flux from the geostationary Meteosat-8 satellite are used to identify and track organized convective systems over their life cycle. The evolution of the system size and vertical extent are used to define five life cycle stages (warm and cold developing, mature, cold and warm dissipating), providing the basis for the composite analysis of the system evolution. The tracked systems are matched to overpasses of the Tropical Rainfall Measuring Mission satellite, and a composite picture of the evolution of various radar and lightning characteristics is built up. The results suggest a fundamental difference in the convective life cycle between land and ocean. African storms evolve from convectively active systems with frequent lightning in their developing stages to more stratiform conditions as they dissipate. Over the Atlantic, the convective fraction remains essentially constant into the dissipating stages, and lightning occurrence peaks late in the life cycle. This behavior is consistent with differences in convective sustainability in land and ocean regions as proposed in previous studies. The area expansion rate during the developing stages of convection is used to provide an estimate of the intensity of convection. Reasonable correlations are found between this index and the convective system lifetime, size, and depth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the project SPURT (trace gas measurements in the tropopause region) a variety of trace gases have been measured in situ in order to investigate the role of dynamical and chemical processes in the extra-tropical tropopause region. In this paper we report on a flight on 10 November 2001 leading from Hohn, Germany (52�N) to Faro, Portugal (37�N) through a strongly developed deep stratospheric intrusion. This streamer was associated with a large convective system over the western Mediterranean with potentially significant troposphere-to-stratosphere transport. Along major parts of the flight we measured unexpectedly high NOy mixing ratios. Also H2O mixing ratios were significantly higher than stratospheric background levels confirming the extraordinary chemical signature of the probed air masses in the interior of the streamer. Backward trajectories encompassing the streamer enable to analyze the origin and physical characteristics of the air masses and to trace troposphere-to-stratosphere transport. Near the western flank of the streamer features caused by long range transport, such as tropospheric filaments characterized by sudden drops in the O3 and NOy mixing ratios and enhanced CO and H2O can be reconstructed in great detail using the reverse domain filling technique. These filaments indicate a high potential for subsequent mixing with the stratospheric air. At the south-western edge of the streamer a strong gradient in the NOy and the O3 mixing ratios coincides very well with a sharp gradient in potential vorticity in the ECMWF fields. In contrast, in the interior of the streamer the observed highly elevated NOy and H2O mixing ratios up to a potential temperature level of 365K and potential vorticity values of maximum 10 PVU cannot be explained in terms of resolved troposphere-to-stratosphere transport along the backward trajectories. Also mesoscale simulations with a High Resolution Model reveal no direct evidence for convective H2O injection up to this level. Elevated H2O mixing ratios in the ECMWF and HRM are seen only up to about tropopause height at 340 hPa and 270 hPa, respectively, well below flight altitude of about 200 hPa. However, forward tracing of the convective influence as identified by satellite brightness temperature measurements and counts of lightning strokes shows that during this part of the flight the aircraft was closely following the border of an air mass which was heavily impacted by convective activity over Spain and Algeria. This is evidence that deep convection at mid-latitudes may have a large impact on the tracer distribution of the lowermost stratosphere reaching well above the thunderstorms anvils as claimed by recent studies using cloud-resolving models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes new advances in the exploitation of oxygen A-band measurements from POLDER3 sensor onboard PARASOL, satellite platform within the A-Train. These developments result from not only an account of the dependence of POLDER oxygen parameters to cloud optical thickness τ and to the scene's geometrical conditions but also, and more importantly, from the finer understanding of the sensitivity of these parameters to cloud vertical extent. This sensitivity is made possible thanks to the multidirectional character of POLDER measurements. In the case of monolayer clouds that represent most of cloudy conditions, new oxygen parameters are obtained and calibrated from POLDER3 data colocalized with the measurements of the two active sensors of the A-Train: CALIOP/CALIPSO and CPR/CloudSat. From a parameterization that is (μs, τ) dependent, with μs the cosine of the solar zenith angle, a cloud top oxygen pressure (CTOP) and a cloud middle oxygen pressure (CMOP) are obtained, which are estimates of actual cloud top and middle pressures (CTP and CMP). Performances of CTOP and CMOP are presented by class of clouds following the ISCCP classification. In 2008, the coefficient of the correlation between CMOP and CMP is 0.81 for cirrostratus, 0.79 for stratocumulus, 0.75 for deep convective clouds. The coefficient of the correlation between CTOP and CTP is 0.75, 0.73, and 0.79 for the same cloud types. The score obtained by CTOP, defined as the confidence in the retrieval for a particular range of inferred value and for a given error, is higher than the one of MODIS CTP estimate. Scores of CTOP are the highest for bin value of CTP superior in numbers. For liquid (ice) clouds and an error of 30 hPa (50 hPa), the score of CTOP reaches 50% (70%). From the difference between CTOP and CMOP, a first estimate of the cloud vertical extent h is possible. A second estimate of h comes from the correlation between the angular standard deviation of POLDER oxygen pressure σPO2 and the cloud vertical extent. This correlation is studied in detail in the case of liquid clouds. It is shown to be spatially and temporally robust, except for clouds above land during winter months. The analysis of the correlation's dependence on the scene's characteristics leads to a parameterization providing h from σPO2. For liquid water clouds above ocean in 2008, the mean difference between the actual cloud vertical extent and the one retrieved from σPO2 (from the pressure difference) is 5 m (−12 m). The standard deviation of the mean difference is close to 1000 m for the two methods. POLDER estimates of the cloud geometrical thickness obtain a global score of 50% confidence for a relative error of 20% (40%) of the estimate for ice (liquid) clouds over ocean. These results need to be validated outside of the CALIPSO/CloudSat track.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise specification of the vertical distribution of cloud optical properties is important to reduce the uncertainty in quantifying the radiative impacts of clouds. The new global observations of vertical profiles of clouds from the CloudSat mission provide opportunities to describe cloud structures and to improve parameterization of clouds in the weather and climate prediction models. In this study, four years (2007-2010) of observations of vertical structure of clouds from the CloudSat cloud profiling radar have been used to document the mean vertical structure of clouds associated with the Indian summer monsoon (ISM) and its intra-seasonal variability. Active and break monsoon spells associated with the intra-seasonal variability of ISM have been identified by an objective criterion. For the present analysis, we considered CloudSat derived column integrated cloud liquid and ice water, and vertically profiles of cloud liquid and ice water content. Over the South Asian monsoon region, deep convective clouds with large vertical extent (up to 14 km) and large values of cloud water and ice content are observed over the north Bay of Bengal. Deep clouds with large ice water content are also observed over north Arabian Sea and adjoining northwest India, along the west coast of India and the south equatorial Indian Ocean. The active monsoon spells are characterized by enhanced deep convection over the Bay of Bengal, west coast of India and northeast Arabian Sea and suppressed convection over the equatorial Indian Ocean. Over the Bay of Bengal, cloud liquid water content and ice water content is enhanced by similar to 90 and similar to 200 % respectively during the active spells. An interesting feature associated with the active spell is the vertical tilting structure of positive CLWC and CIWC anomalies over the Arabian Sea and the Bay of Bengal, which suggests a pre-conditioning process for the northward propagation of the boreal summer intra-seasonal variability. It is also observed that during the break spells, clouds are not completely suppressed over central India. Instead, clouds with smaller vertical extent (3-5 km) are observed due to the presence of a heat low type of circulation. The present results will be useful for validating the vertical structure of clouds in weather and climate prediction models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other spaceborne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so one must first calibrate the reflected solar radiation received by the photon-counting detectors of the GLAS 532-nm channel, the primary channel for atmospheric products. Solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (i) calibration with coincident airborne and GLAS observations, (ii) calibration with coincident Geostationary Opera- tional Environmental Satellite (GOES) and GLAS observations of deep convective clouds, and (iii) cali- bration from first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retriev- als is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.