888 resultados para DEATH RECEPTORS FAMILY MEMBERS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic myeloproliferative disorders (MPDs) are clonal haematopoietic stem cell malignancies characterised by an accumulation of mature myeloid cells in bone marrow and peripheral blood. Deregulation of the apoptotic machinery may be associated with MPD physiopathology. Aims To evaluate expression of death receptors` family members, mononuclear cell apoptosis resistance, and JAK2 allele burden. Subjects and Methods Bone marrow haematopoietic progenitor CD34 cells were separated using the Ficoll-hypaque protocol followed by the Miltenyi CD34 isolation kit, and peripheral blood leukocytes were separated by the Haes-Steril method. Total RNA was extracted by the Trizol method, the High Capacity Kit was used to synthesise cDNA, and real-time PCR was performed using SybrGreen in ABIPrism 7500 equipment. The results of gene expression quantification are given as 2(-Delta Delta Ct). The JAK2 V617F mutation was detected by real-time allelic discrimination PCR assay. Peripheral blood mononuclear cells (PBMCs) were isolated by the Ficoll-hypaque protocol and cultured in the presence of apoptosis inducers. Results In CD34 cells, there was mRNA overexpression for fas, faim and c-flip in polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), as well as fasl in PMF, and dr4 levels were increased in ET. In leukocytes, fas, c-flip and trail levels were increased in PV, and dr5 expression was decreased in ET. There was an association between dr5 and fasl expression and JAK2V617F mutation. PBMCs from patients with PV, ET or PMF showed resistance to apoptosis inducers. Conclusions The results indicate deregulation of apoptosis gene expression, which may be associated with MPD pathogenesis leading to accumulation of myeloid cells in MPDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic beta cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-xL and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-xL genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-xL and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organ transplant shortage is a global problem caused by several factors, most of which are related to members of the family, who play it major role in the donation process. Objective. We sought to determine the most determinant features in the donor profile that relate to positive decisions versus refusal of donation. Material and Methods. Fifty-six families who were approached by the Organ Procurement Organization (OPO) from November 2004 to April 2006 agreed to participate in this work. To assess donor profiles, we used it structured interview. Results. Parental involvement directly in decisions about donation lead to significantly less frequent consent (P = .005), young donor age was associated with a reduced probability of donation (P = .002), violent death negatively influenced donation consent, excluding suicide (P = .004). Conclusion. The present study showed violent death, young patient age, and parental donation consent to be the most important factors that make it harder to obtain consent organ donation. When a collateral relative (sibling/uncle) or children were responsible for the donation decision, there was more success of consent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viruses have evolved many distinct strategies to avoid the host's apoptotic response. Here we describe a new family of viral inhibitors (v-FLIPs) which interfere with apoptosis signalled through death receptors and which are present in several gamma-herpesviruses (including Kaposi's-sarcoma-associated human herpesvirus-8), as well as in the tumorigenic human molluscipoxvirus. v-FLIPs contain two death-effector domains which interact with the adaptor protein FADD, and this inhibits the recruitment and activation of the protease FLICE by the CD95 death receptor. Cells expressing v-FLIPs are protected against apoptosis induced by CD95 or by the related death receptors TRAMP and TRAIL-R. The herpesvirus saimiri FLIP is detected late during the lytic viral replication cycle, at a time when host cells are partially protected from CD95-ligand-mediated apoptosis. Protection of virus-infected cells against death-receptor-induced apoptosis may lead to higher virus production and contribute to the persistence and oncogenicity of several FLIP-encoding viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligands of the tumor necrosis factor superfamily (TNFSF) (4-1BBL, APRIL, BAFF, CD27L, CD30L, CD40L, EDA1, EDA2, FasL, GITRL, LIGHT, lymphotoxin alpha, lymphotoxin alphabeta, OX40L, RANKL, TL1A, TNF, TWEAK, and TRAIL) bind members of the TNF receptor superfamily (TNFRSF). A comprehensive survey of ligand-receptor interactions was performed using a flow cytometry-based assay. All ligands engaged between one and five receptors, whereas most receptors only bound one to three ligands. The receptors DR6, RELT, TROY, NGFR, and mouse TNFRH3 did not interact with any of the known TNFSF ligands, suggesting that they either bind other types of ligands, function in a ligand-independent manner, or bind ligands that remain to be identified. The study revealed that ligand-receptor pairs are either cross-reactive between human and mouse (e.g. Tweak/Fn14, RANK/RANKL), strictly species-specific (GITR/GITRL), or partially species-specific (e.g. OX40/OX40L, CD40/CD40L). Interestingly, the receptor binding patterns of lymphotoxin alpha and alphabeta are redundant in the human but not in the mouse system. Ligand oligomerization allowed detection of weak interactions, such as that of human TNF with mouse TNFR2. In addition, mouse APRIL exists as two different splice variants differing by a single amino acid. Although human APRIL does not interact with BAFF-R, the shorter variant of mouse APRIL exhibits weak but detectable binding to mouse BAFF-R.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death receptors (DRs) of the TNFR superfamily contribute to antiviral immunity by promoting apoptosis and regulating immune homeostasis during infection, and viral inhibition of DR signaling can alter immune defenses. Here we identify the human cytomegalovirus (HCMV) UL141 glycoprotein as necessary and sufficient to restrict TRAIL DR function. Despite showing no primary sequence homology to TNF family cytokines, UL141 binds the ectodomains of both human TRAIL DRs with affinities comparable to the natural ligand TRAIL. UL141 binding promotes intracellular retention of the DRs, thus protecting virus infected cells from TRAIL and TRAIL-dependent NK cell-mediated killing. The identification of UL141 as a herpesvirus modulator of the TRAIL DRs strongly implicates this pathway as a regulator of host defense to HCMV and highlights UL141 as a pleiotropic inhibitor of NK cell effector function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Death receptors belong to the TNF receptor family and are characterised by an intracellular death domain that serves to recruit adapter proteins such as TRADD and FADD and cysteine proteases such as Caspase-8. Activation of Caspase-8 on the aggregated receptor leads to apoptosis. Triggering of death receptors is mediated through the binding of specific ligands of the TNF family, which are homotrimeric type-2 membrane proteins displaying three receptor binding sites. There are various means of modulating the activation of death receptors. The status of the ligand (membrane-bound vs. soluble) is critical in the activation of Fas and of TRAIL receptors. Cleavage of membrane-bound FasL to a soluble form (sFasL) does not affect its ability to bind to Fas but drastically decreases its cytotoxic activity. Conversely, cross-linking epitope-tagged sFasL with anti-tag antibodies to mimic membrane-bound ligand results in a 1000-fold increase in cytotoxicity. This suggests that more than three Fas molecules need to be aggregated to efficiently signal apoptosis. Death receptors can also be regulated by decoy receptors. The cytotoxic ligand TRAIL interacts with five receptors, only two of which (TRAIL-R1 and -R2) have a death domain. TRAIL-R3 is anchored to the membrane by a glycolipid and acts as a dominant negative inhibitor of TRAIL-mediated apoptosis when overexpressed on TRAIL-sensitive cells. Intracellular proteins interacting with the apoptotic pathway are potential modulators of death receptors. FLIP resembles Caspase-8 in structure but lacks protease activity. It interacts with both FADD and Caspase-8 to inhibits the apoptotic signal of death receptors and, at the same time, can activate other signalling pathways such as that leading to NF-kappa B activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prodigiosin and obatoclax, members of the prodiginines family, are small molecules with anti-cancer properties that are currently under preclinical and clinical trials. The molecular target(s) of these agents, however, is an open question. Combining experimental and computational techniques we find that prodigiosin binds to the BH3 domain in some BCL-2 protein families, which play an important role in the apoptotic programmed cell death. In particular, our results indicate a large affinity of prodigiosin for MCL-1, an anti-apoptotic member of the BCL-2 family. In melanoma cells, we demonstrate that prodigiosin activates the mitochondrial apoptotic pathway by disrupting MCL-1/BAK complexes. Computer simulations with the PELE software allow the description of the induced fit process, obtaining a detailed atomic view of the molecular interactions. These results provide new data to understand the mechanism of action of these molecules, and assist in the development of more specific inhibitors of anti-apoptotic BCL-2 proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (Apo2L/TRAIL) belongs to the TNF family known to transduce their death signals via cell membrane receptors. Because it has been shown that Apo2L/TRAIL induces apoptosis in tumor cells without or little toxicity to normal cells, this cytokine became of special interest for cancer research. Unfortunately, cancer cells are often resistant to Apo2L/TRAIL-induced apoptosis; however, this can be at least partially negotiated by parallel treatment with other substances, such as chemotherapeutic agents. Here, we report that cardiac glycosides, which have been used for the treatment of cardiac failure for many years, sensitize lung cancer cells but not normal human peripheral blood mononuclear cells to Apo2L/TRAIL-induced apoptosis. Sensitization to Apo2L/TRAIL mediated by cardiac glycosides was accompanied by up-regulation of death receptors 4 (DR4) and 5 (DR5) on both RNA and protein levels. The use of small interfering RNA revealed that up-regulation of death receptors is essential for the demonstrated augmentation of apoptosis. Blocking of up-regulation of DR4 and DR5 alone significantly reduced cell death after combined treatment with cardiac glycosides and Apo2L/TRAIL. Combined silencing of DR4 and DR5 abrogated the ability of cardiac glycosides and Apo2L/TRAIL to induce apoptosis in an additive manner. To our knowledge, this is the first demonstration that glycosides up-regulate DR4 and DR5, thereby reverting the resistance of lung cancer cells to Apo2/TRAIL-induced apoptosis. Our data suggest that the combination of Apo2L/TRAIL and cardiac glycosides may be a new interesting anticancer treatment strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calreticulin (CALR) is a highly conserved, multifunctional protein involved in a variety of cellular processes including the maintenance of intracellular calcium homeostasis, proper protein folding, differentiation and immunogenic cell death. More recently, a crucial role for CALR in the pathogenesis of certain hematologic malignancies was discovered: in clinical subgroups of acute myeloid leukemia, CALR overexpression mediates a block in differentiation, while somatic mutations have been found in the majority of patients with myeloproliferative neoplasms with nonmutated Janus kinase 2 gene (JAK2) or thrombopoietin receptor gene (MPL). However, the mechanisms underlying CALR promoter activation have insufficiently been investigated so far. By dissecting the core promoter region, we could identify a functional TATA-box relevant for transcriptional activation. In addition, we characterized two evolutionary highly conserved cis-regulatory modules (CRMs) within the proximal promoter each composed of one binding site for the transcription factors SP1 and SP3 as well as for the nuclear transcription factor Y (NFY) and we verified binding of these factors to their cognate sites in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the intracellular death program, hetero- and homodimerization of different anti- and pro-apoptotic Bcl-2-related proteins are critical in the determination of cell fate. From a rat ovarian fusion cDNA library, we isolated a new pro-apoptotic Bcl-2 gene, Bcl-2-related ovarian killer (Bok). Bok had conserved Bcl-2 homology (BH) domains 1, 2, and 3 and a C-terminal transmembrane region present in other Bcl-2 proteins, but lacked the BH4 domain found only in anti-apoptotic Bcl-2 proteins. In the yeast two-hybrid system, Bok interacted strongly with some (Mcl-1, BHRF1, and Bfl-1) but not other (Bcl-2, Bcl-xL, and Bcl-w) anti-apoptotic members. This finding is in direct contrast to the ability of other pro-apoptotic members (Bax, Bak, and Bik) to interact with all of the anti-apoptotic proteins. In addition, negligible interaction was found between Bok and different pro-apoptotic members. In mammalian cells, overexpression of Bok induced apoptosis that was blocked by the baculoviral-derived cysteine protease inhibitor P35. Cell killing induced by Bok was also suppressed following coexpression with Mcl-1 and BHRF1 but not with Bcl-2, further indicating that Bok heterodimerized only with selective anti-apoptotic Bcl-2 proteins. Northern blot analysis indicated that Bok was highly expressed in the ovary, testis and uterus. In situ hybridization analysis localized Bok mRNA in granulosa cells, the cell type that underwent apoptosis during follicle atresia. Identification of Bok as a new pro-apoptotic Bcl-2 protein with restricted tissue distribution and heterodimerization properties could facilitate elucidation of apoptosis mechanisms in reproductive tissues undergoing hormone-regulated cyclic cell turnover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of Bcl-2-related proteins regulates cell death and shares highly conserved BH1 and BH2 domains. BH1 and BH2 domains of Bcl-2 were required for it to heterodimerize with Bax and to repress apoptosis. A yeast two-hybrid assay accurately reproduced this interaction and defined a selectivity and hierarchy of further dimerizations. Bax also heterodimerizes with Bcl-xL, Mcl-1, and A1. A Gly-159-->Ala substitution in BH1 of Bcl-xL disrupted its heterodimerization with Bax and abrogated its inhibition of apoptosis in mammalian cells. This suggests that the susceptibility to apoptosis is determined by multiple competing dimerizations in which Bax may be a common partner.