995 resultados para DC electrical conductivity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline tin oxide (SnO2) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO3) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO2 powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer's formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO2 nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO2 nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four distinct peaks are observed at 140, -26, -132 and -140°C in the sigma x* against T-1 plot between 200 and - 196°C for (NH4)3H(SO4)2, corresponding to four different phase transitions of which the one at -26°C is reported here for the first time. Data on doped samples reveal the charge transport mechanism in the crystal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dc electrical conductivity of TlInX2 (X = Se, Te) single crystals, parallel and perpendicular to the (001) c-axis is studied under high quasi-hydrostatic pressure up to 7.0 GPa, at room temperature. Conductivity measurements parallel to the c-axis are carried out at high pressures and down to liquid nitrogen temperatures. These materials show continuous metallization under pressure. Both compounds have almost the same pressure coefficient of the electrical activation energy parallel to the c-axis, d(ΔE∥)/dP = −2.9 × 10−10 eV/Pa, which results from the narrowing of the band gap under pressure. The results are discussed in the light of the band structure of these compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expoxy nanocomposites with multiwell carbon nanotubes (mwcnts) filler up to 0.3%wt were prepared by sheer mixing and good dispersion of the MWCNTS in the epoxy was successfully achieved. The electrical behaviour was characterized by measurements of the alternating current (ac) and direct current (dc) conductives at room temperature. Typical percolation behaviour was observed at a low percolation threshold of 0.055%. Frequency independent ac conductivity was observed at low frequencies but not at high frequencies. An equivalent circuit models was used to predict the impedence response in these nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DC and AC electrical conductivity measurements in single crystals of diammonium hydrogen phosphate along the c axis show anomalous variations at 174, 246 and 416 K. The low-frequency dielectric constant also exhibits peaks exactly at these temperatures with a thermal hysteresis of 13 degrees C for the peak at 416 K. These specific features of the electrical properties are in agreement with earlier NMR second-moment data and can be identified with three distinct phase transitions that occur in the crystal. The electrical conductivity values have been found to increase linearly with impurity concentration in specimens doped with a specific amount of SO42- ions. The mechanisms of the phase transition and of the electrical conduction process are discussed in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of dc conductivity and dielectric constant show that deuteration causes an upward shift of the high temperature phase transition point from 186.5 to 191°C and a downward shift of the low temperature transition point from 10 to -1.5°C in LiNH4SO4. Mechanisms of phase transitions and of electrical transport in the crystal are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long term performance of conductivity of p-toluene sulfonic acid (pTSA) doped electrochemically synthesized polypyrrole (PPy) films was estimated from accelerated aging studies between 80 °C and 120 °C. Conductivity decay experiments indicated that overall aging behavior of PPy films deviated from first order kinetics at prolonged aging times at elevated temperatures. However, an approximate value for the activation energy of the conductivity decay of PPy was calculated as E=47.4 kJ/mol, enabling an estimate of a rate constant of k=8.35×10−6/min at 20 °C. The rate of decrease of conductivity was not only temperature dependent but also influenced by the dopant concentration. A concentration of 0.005 M pTSA in the electrolyte resulted in a conductive film and when this film was exposed to 120 °C for a period of 40 h, the conductivity decayed to about 1/20 of its original value. The concentration of pTSA was increased to 0.05 mol/l and when the resulting film was aged in the same way, it showed a decrease in the conductivity to about 1/3 of its original value. Both microwave transmission and dc conductivity data revealed that highly doped films were considerably more electrically stable than lightly doped films. The dopant had a preserving effect on the electrical properties of PPy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blend films (free-standing) containing 20% in volume of polyaniline (PANI) in 80% of natural rubber (NR) were fabricated by casting in three different ways: (1) adding PANI-EB (emeraldine base) dissolved in N-methyl-2-pyrrolidone (NMP) to the latex (NRL), (2) adding PANI-EB dissolved in in-cresol to NR dissolved in xylol (NRD), (3) overlaying the surface of a pure NR cast film with a PANI layer grown by in situ polymerization (NRO). All the films were immersed into HCl solution to achieve the primary doping (protonation) of PANI before the characterization. The main goal here was to investigate the elastomeric and electrical conductivity properties for each blend, which may be applied as pressure and deformation sensors in the future. The characterization was carried out by optical microscopy, dc conductivity, vibrational spectroscopy (infrared absorption and Raman scattering), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and tensile stress-strain curves. The results suggest that the NRL blend is the most suitable in terms of mechanical and electrical properties required for applications in pressure and deformation sensors: a gain of conductivity without losing the elastomeric property of the rubber. (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of substituting Si by M4+ cations in soda-lime silica glasses were analyzed by impedance spectroscopy in the frequency range of 1 Hz-1 MHz. The glass composition was (mol%) 22Na(2)O center dot 8CaO center dot 65SiO(2)center dot 5MO(2), M = Si, Ti, Ge, Zr, Sn, and Ce. Although the Na+ concentration in the glasses is constant, the Zr-containing glass exhibits the highest dc conductivity and the lowest activation energy, while the Ce-containing glass exhibits the lowest conductivity. The activation energies obtained experimentally agree with those obtained by a theoretical equation proposed by Anderson and Stuart. The differences in electrical conductivity presented by the several M-containing glasses are attributed to the effect that the M4+ ion has on the mobility of the diffusing Na+ ion. (C) 2012 Elsevier B.V. All rights reserved.