27 resultados para DBpedia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi è stato proposto AffiliationExtractor, un tool modulare scritto in Python, preposto all'estrazione di informazioni su affiliazioni di autori di pubblicazioni scientifiche, producendo in output un dataset RDF contente queste informazioni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to congure the annotations to their specic needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation condence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enriching knowledge bases with multimedia information makes it possible to complement textual descriptions with visual and audio information. Such complementary information can help users to understand the meaning of assertions, and in general improve the user experience with the knowledge base. In this paper we address the problem of how to enrich ontology instances with candidate images retrieved from existing Web search engines. DBpedia has evolved into a major hub in the Linked Data cloud, interconnecting millions of entities organized under a consistent ontology. Our approach taps into the Wikipedia corpus to gather context information for DBpedia instances and takes advantage of image tagging information when this is available to calculate semantic relatedness between instances and candidate images. We performed experiments with focus on the particularly challenging problem of highly ambiguous names. Both methods presented in this work outperformed the baseline. Our best method leveraged context words from Wikipedia, tags from Flickr and type information from DBpedia to achieve an average precision of 80%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method for identifying topics in text published in social media, by applying topic recognition techniques that exploit DBpedia. We evaluate such method for social media in Spanish and we provide the results of the evaluation performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to configure the annotations to their specific needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation confidence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viene presentato l’approccio Linked Data, che si serve di descrizioni scritte in linguaggio RDF per rendere espliciti ai calcolatori i legami semantici esistenti tra le risorse che popolano il Web. Si descrive quindi il progetto DBpedia, che si propone di riorganizzare le informazioni disponibili su Wikipedia in formato Linked Data, così da renderle più facilmente consultabili dall’utente e da rendere possibile l’esecuzione di query complesse. Si discute quindi della sfida riguardante l’integrazione di contenuti multimediali (immagini, file audio, video…) su DBpedia e si analizzano tre progetti rivolti in tal senso: Multipedia, DBpedia Commons e IMGpedia. Vengono infine sottolineate l’importanza e le potenzialità legate alla creazione di un Web Semantico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tecnologias da Web Semântica como RDF, OWL e SPARQL sofreram nos últimos anos um forte crescimento e aceitação. Projectos como a DBPedia e Open Street Map começam a evidenciar o verdadeiro potencial da Linked Open Data. No entanto os motores de pesquisa semânticos ainda estão atrasados neste crescendo de tecnologias semânticas. As soluções disponíveis baseiam-se mais em recursos de processamento de linguagem natural. Ferramentas poderosas da Web Semântica como ontologias, motores de inferência e linguagens de pesquisa semântica não são ainda comuns. Adicionalmente a esta realidade, existem certas dificuldades na implementação de um Motor de Pesquisa Semântico. Conforme demonstrado nesta dissertação, é necessária uma arquitectura federada de forma a aproveitar todo o potencial da Linked Open Data. No entanto um sistema federado nesse ambiente apresenta problemas de performance que devem ser resolvidos através de cooperação entre fontes de dados. O standard actual de linguagem de pesquisa na Web Semântica, o SPARQL, não oferece um mecanismo para cooperação entre fontes de dados. Esta dissertação propõe uma arquitectura federada que contém mecanismos que permitem cooperação entre fontes de dados. Aborda o problema da performance propondo um índice gerido de forma centralizada assim como mapeamentos entre os modelos de dados de cada fonte de dados. A arquitectura proposta é modular, permitindo um crescimento de repositórios e funcionalidades simples e de forma descentralizada, à semelhança da Linked Open Data e da própria World Wide Web. Esta arquitectura trabalha com pesquisas por termos em linguagem natural e também com inquéritos formais em linguagem SPARQL. No entanto os repositórios considerados contêm apenas dados em formato RDF. Esta dissertação baseia-se em múltiplas ontologias partilhadas e interligadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El objetivo de este proyecto es familiarizarse con las tecnologías de Semántica, entender que es una ontología y aprender a modelar una en un dominio elegido por nosotros. Realizar un parser que conectándose a la la Wikipedia y/o DBpedia rellene dicha ontología permitiendo al usuario navegar por sus conceptos y estudiar sus relaciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software de lectura y población de ontología con información de DBpedia y Wikipedia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'Open Data, letteralmente “dati aperti”, è la corrente di pensiero (e il relativo “movimento”) che cerca di rispondere all'esigenza di poter disporre di dati legalmente “aperti”, ovvero liberamente re-usabili da parte del fruitore, per qualsiasi scopo. L’obiettivo dell’Open Data può essere raggiunto per legge, come negli USA dove l’informazione generata dal settore pubblico federale è in pubblico dominio, oppure per scelta dei detentori dei diritti, tramite opportune licenze. Per motivare la necessità di avere dei dati in formato aperto, possiamo usare una comparazione del tipo: l'Open Data sta al Linked Data, come la rete Internet sta al Web. L'Open Data, quindi, è l’infrastruttura (o la “piattaforma”) di cui il Linked Data ha bisogno per poter creare la rete di inferenze tra i vari dati sparsi nel Web. Il Linked Data, in altre parole, è una tecnologia ormai abbastanza matura e con grandi potenzialità, ma ha bisogno di grandi masse di dati tra loro collegati, ossia “linkati”, per diventare concretamente utile. Questo, in parte, è già stato ottenuto ed è in corso di miglioramento, grazie a progetti come DBpedia o FreeBase. In parallelo ai contributi delle community online, un altro tassello importante – una sorta di “bulk upload” molto prezioso – potrebbe essere dato dalla disponibilità di grosse masse di dati pubblici, idealmente anche già linkati dalle istituzioni stesse o comunque messi a disposizione in modo strutturato – che aiutino a raggiungere una “massa” di Linked Data. A partire dal substrato, rappresentato dalla disponibilità di fatto dei dati e dalla loro piena riutilizzabilità (in modo legale), il Linked Data può offrire una potente rappresentazione degli stessi, in termini di relazioni (collegamenti): in questo senso, Linked Data ed Open Data convergono e raggiungono la loro piena realizzazione nell’approccio Linked Open Data. L’obiettivo di questa tesi è quello di approfondire ed esporre le basi sul funzionamento dei Linked Open Data e gli ambiti in cui vengono utilizzati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the datos.bne.es library dataset. The dataset makes available the authority and bibliography catalogue from the Biblioteca Nacional de España (BNE, National Library of Spain) as Linked Data. The catalogue contains around 7 million authority and bibliographic records. The records in MARC 21 format were transformed to RDF and modelled using IFLA (International Federation of Library Associations) ontologies and other well-established vocabularies such as RDA (Resource Description and Access) or the Dublin Core Metadata Element Set. A tool named MARiMbA automatized the RDF generation process and the data linkage to DBpedia and other library linked data resources such as VIAF (Virtual International Authority File) or GND (Gemeinsame Normdatei, the authority dataset from the German National Library).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the authors present an approach for the semantic annotation of RESTful services in the geospatial domain. Their approach automates some stages of the annotation process, by using a combination of resources and services: a cross-domain knowledge base like DBpedia, two domain ontologies like GeoNames and the WGS84 vocabulary, and suggestion and synonym services. The authors’ approach has been successfully evaluated with a set of geospatial RESTful services obtained from ProgrammableWeb.com, where geospatial services account for a third of the total amount of services available in this registry.