983 resultados para D-space
Resumo:
The Space Vector PWM implementation and operation for a Four-leg Voltage Source Inverter (VSI) is detailed and discussed in this paper. Although less common, four-leg VSIs are a viable solution for situations where neutral connection is necessary, including Active Power Filter applications. This topology presents advantages regarding the VSI DC link and capacitance, which make it useful for high power devices. Theory, implementation and simulations are also discussed in this paper. © 2011 IEEE.
Resumo:
Reaching and grasping an object is an action that can be performed in light, under visual guidance, as well as in darkness, under proprioceptive control only. Area V6A is a visuomotor area involved in the control of reaching movements. V6A, besides neurons activated by the execution of reaching movements, shows passive somatosensory and visual responses. This suggests fro V6A a multimodal capability of integrating sensory and motor-related information, We wanted to know whether this integration occurrs in reaching movements and in the present study we tested whether the visual feedback influenced the reaching activity of V6A neurons. In order to better address this question, we wanted to interpret the neural data in the light of the kinematic of reaching performance. We used an experimental paradigm that could examine V6A responses in two different visual backgrounds, light and dark. In these conditions, the monkey performed an istructed-delay reaching task moving the hand towards different target positions located in the peripersonal space. During the execution of reaching task, the visual feedback is processed in a variety of patterns of modulation, sometimes not expected. In fact, having already demonstrated in V6A reach-related discharges in absence of visual feedback, we expected two types of neural modulation: 1) the addition of light in the environment enhanced reach-related discharges recorded in the dark; 2) the light left the neural response unmodified. Unexpectedly, the results show a complex pattern of modulation that argues against a simple additive interaction between visual and motor-related signals.
Resumo:
Many psychophysical studies suggest that target depth and direction during reaches are processed independently, but the neurophysiological support to this view is so far limited. Here, we investigated the representation of reach depth and direction by single neurons in an area of the medial posterior parietal cortex (V6A). Single-unit activity was recorded from V6A in two Macaca fascicularis monkeys performing a fixation-to-reach task to targets at different depths and directions. We found that in a substantial percentage of V6A neurons depth and direction signals jointly influenced fixation, planning and arm movement-related activity in 3D space. While target depth and direction were equally encoded during fixation, depth tuning became stronger during arm movement planning, execution and target holding. The spatial tuning of fixation activity was often maintained across epochs, and this occurred more frequently in depth. These findings support for the first time the existence of a common neural substrate for the encoding of target depth and direction during reaching movements in the posterior parietal cortex. Present results also highlight the presence in V6A of several types of cells that process independently or jointly eye position and arm movement planning and execution signals in order to control reaches in 3D space. It is possible that depth and direction influence also the metrics of the reach action and that this effect on the reach kinematic variables can account for the spatial tuning we found in V6A neural activity. For this reason, we recorded and analyzed behavioral data when one monkey performed reaching movements in 3-D space. We evaluated how the target spatial position, in particular target depth and target direction, affected the kinematic parameters and trajectories describing the motor action properties.
Resumo:
We show that the product of a subparacompact C-scattered space and a Lindelöf D-space is D. In addition, we show that every regular locally D-space which is the union of a finite collection of subparacompact spaces and metacompact spaces has the D-property. Also, we extend this result from the class of locally D-spaces to the wider class of D-scattered spaces. All the results are shown in a direct way.
Resumo:
This paper considers the motion planning problem for oriented vehicles travelling at unit speed in a 3-D space. A Lie group formulation arises naturally and the vehicles are modeled as kinematic control systems with drift defined on the orthonormal frame bundles of particular Riemannian manifolds, specifically, the 3-D space forms Euclidean space E-3, the sphere S-3, and the hyperboloid H'. The corresponding frame bundles are equal to the Euclidean group of motions SE(3), the rotation group SO(4), and the Lorentz group SO (1, 3). The maximum principle of optimal control shifts the emphasis for these systems to the associated Hamiltonian formalism. For an integrable case, the extremal curves are explicitly expressed in terms of elliptic functions. In this paper, a study at the singularities of the extremal curves are given, which correspond to critical points of these elliptic functions. The extremal curves are characterized as the intersections of invariant surfaces and are illustrated graphically at the singular points. It. is then shown that the projections, of the extremals onto the base space, called elastica, at these singular points, are curves of constant curvature and torsion, which in turn implies that the oriented vehicles trace helices.
Resumo:
While voxel-based 3-D MRI analysis methods as well as assessment of subtracted ictal versus interictal perfusion studies (SISCOM) have proven their potential in the detection of lesions in focal epilepsy, a combined approach has not yet been reported. The present study investigates if individual automated voxel-based 3-D MRI analyses combined with SISCOM studies contribute to an enhanced detection of mesiotemporal epileptogenic foci. Seven consecutive patients with refractory complex partial epilepsy were prospectively evaluated by SISCOM and voxel-based 3-D MRI analysis. The functional perfusion maps and voxel-based statistical maps were coregistered in 3-D space. In five patients with temporal lobe epilepsy (TLE), the area of ictal hyperperfusion and corresponding structural abnormalities detected by 3-D MRI analysis were identified within the same temporal lobe. In two patients, additional structural and functional abnormalities were detected beyond the mesial temporal lobe. Five patients with TLE underwent epileptic surgery with favourable postoperative outcome (Engel class Ia and Ib) after 3-5 years of follow-up, while two patients remained on conservative treatment. In summary, multimodal assessment of structural abnormalities by voxel-based analysis and SISCOM may contribute to advanced observer-independent preoperative assessment of seizure origin.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.
Resumo:
We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.
Resumo:
Tässä työssä raportoidaan harjoitustyön kehittäminen ja toteuttaminen Aktiivisen- ja robottinäön kurssille. Harjoitustyössä suunnitellaan ja toteutetaan järjestelmä joka liikuttaa kappaleita robottikäsivarrella kolmiuloitteisessa avaruudessa. Kappaleidenpaikkojen määrittämiseen järjestelmä käyttää digitaalisia kuvia. Tässä työssä esiteltävässä harjoitustyötoteutuksessa käytettiin raja-arvoistusta HSV-väriavaruudessa kappaleiden segmentointiin kuvasta niiden värien perusteella. Segmentoinnin tuloksena saatavaa binäärikuvaa suodatettiin mediaanisuotimella kuvan häiriöiden poistamiseksi. Kappaleen paikkabinäärikuvassa määritettiin nimeämällä yhtenäisiä pikseliryhmiä yhtenäisen alueen nimeämismenetelmällä. Kappaleen paikaksi määritettiin suurimman nimetyn pikseliryhmän paikka. Kappaleiden paikat kuvassa yhdistettiin kolmiuloitteisiin koordinaatteihin kalibroidun kameran avulla. Järjestelmä liikutti kappaleita niiden arvioitujen kolmiuloitteisten paikkojen perusteella.
Resumo:
Adolescent idiopathic scoliosis (AIS) is a musculoskeletal pathology. It is a complex spinal curvature in a 3-D space that also affects the appearance of the trunk. The clinical follow-up of AIS is decisive for its management. Currently, the Cobb angle, which is measured from full spine radiography, is the most common indicator of the scoliosis progression. However, cumulative exposure to X-rays radiation increases the risk for certain cancers. Thus, a noninvasive method for the identification of the scoliosis progression from trunk shape analysis would be helpful. In this study, a statistical model is built from a set of healthy subjects using independent component analysis and genetic algorithm. Based on this model, a representation of each scoliotic trunk from a set of AIS patients is computed and the difference between two successive acquisitions is used to determine if the scoliosis has progressed or not. This study was conducted on 58 subjects comprising 28 healthy subjects and 30 AIS patients who had trunk surface acquisitions in upright standing posture. The model detects 93% of the progressive cases and 80% of the nonprogressive cases. Thus, the rate of false negatives, representing the proportion of undetected progressions, is very low, only 7%. This study shows that it is possible to perform a scoliotic patient's follow-up using 3-D trunk image analysis, which is based on a noninvasive acquisition technique.
Resumo:
A new aerosol index for the Along-Track Scanning Radiometers (ATSRs) is presented that provides a means to detect desert dust contamination in infrared SST retrievals. The ATSR Saharan dust index (ASDI) utilises only the thermal infrared channels and may therefore be applied consistently to the entire ATSR data record (1991 to present), for both day time and night time observations. The derivation of the ASDI is based on a principal component (PC) analysis (PCA) of two unique pairs of channel brightness temperature differences (BTDs). In 2-D space (i.e. BTD vs BTD), it is found that the loci of data unaffected by aerosol are confined to a single axis of variability. In contrast, the loci of aerosol-contaminated data fall off-axis, shifting in a direction that is approximately orthogonal to the clear-sky axis. The ASDI is therefore defined to be the second PC, where the first PC accounts for the clear-sky variability. The primary ASDI utilises the ATSR nadir and forward-view observations at 11 and 12 μm (ASDI2). A secondary, three-channel nadir-only ASDI (ASDI3) is also defined for situations where data from the forward view are not available. Empirical and theoretical analyses suggest that ASDI is well correlated with aerosol optical depth (AOD: correlation r is typically > 0.7) and provides an effective tool for detecting desert mineral dust. Overall, ASDI2 is found to be more effective than ASDI3, with the latter being sensitive only to very high dust loading. In addition, use of ASDI3 is confined to night time observations as it relies on data from the 3.7 μm channel, which is sensitive to reflected solar radiation. This highlights the benefits of having data from both a nadir- and a forward-view for this particular approach to aerosol detection.
Resumo:
A neighbourhood assignment in a space X is a family O = {O-x: x is an element of X} of open subsets of X such that X is an element of O-x for any x is an element of X. A set Y subset of X is a kernel of O if O(Y) = U{O-x: x is an element of Y} = X. We obtain some new results concerning dually discrete spaces, being those spaces for which every neighbourhood assignment has a discrete kernel. This is a strictly larger class than the class of D-spaces of [E.K. van Douwen, W.F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (2) (1979) 371-377]. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper presents evaluations among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic panel (PV) (Tracking Factor - TF) in relation to the available power, PV voltage ripple, dynamic response and use of sensors. Using MatLab/Simulink® and DSpace platforms, a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented and a contribution in the implementation of the IC algorithm is performed and called IC based on PI. Moreover, the dynamic response and the tracking factor are also evaluated using a Friendly User Interface, which is capable of online program power curves and compute the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2011 IEEE.
Resumo:
This paper presents evaluations among the most usual maximum power point tracking (MPPT) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel [tracking factor (TF)] in relation to the available power, PV voltage ripple, dynamic response, and use of sensors. Using MatLab/Simulink and dSPACE platforms, a digitally controlled boost dc-dc converter was implemented and connected to an Agilent Solar Array E4350B simulator in order to verify the analytical procedures. The main experimental results are presented for conventional MPPT algorithms and improved MPPT algorithms named IC based on proportional-integral (PI) and perturb and observe based on PI. Moreover, the dynamic response and the TF are also evaluated using a user-friendly interface, which is capable of online program power profiles and computes the TF. Finally, a typical daily insulation is used in order to verify the experimental results for the main PV MPPT methods. © 2012 IEEE.