1000 resultados para D-branes
Resumo:
All possible Bogoliubov operators that generate the thermal transformations in thermo field dynamics form an SU(1,1) group. We discuss this construction in the bosonic string theory. In particular, the transformation of the Fock space and string operators generated by the most general SU(1,1) unitary Bogoliubov transformation and the entropy of the corresponding thermal string are computed. Also, we construct the thermal D-brane generated by the SU(1,1) transformation in a constant Kalb-Ramond field and compute its entropy.
Resumo:
Bosonic boundary states at finite temperature are constructed as solutions of boundary conditions at T not equal0 for bosonic open strings with a constant gauge field F-ab coupled to the boundary. The construction is done in the framework of ther-mo field dynamics where a thermal Bogoliubov transformation maps states and operators to finite temperature. Boundary states are given in terms of states from the direct product space between the Fock space of the closed string and another identical copy of it. By analogy with zero temperature, the boundary states have the interpretation of Dp-branes at finite temperature. The boundary conditions admit two different solutions. The entropy of the closed string in a Dp-brane state is computed and analyzed. It is interpreted as the entropy of the Dp-brane at finite temperature.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the paper of Bonora et al. (2008) [3] we have shown, in the context of type II superstring theory, the classification of the allowed B-field and A-field configurations in the presence of anomaly-free D-branes, the mathematical framework being provided by the geometry of gerbes. Here we complete the discussion considering in detail the case of a stack of D-branes, carrying a non-abelian gauge theory, which was just sketched in Bonora et al. (2008) [3]. In this case we have to mix the geometry of abelian gerbes, describing the B-field, with the one of higher-rank bundles, ordinary or twisted. We describe in detail the various cases that arise according to such a classification, as we did for a single D-brane, showing under which hypotheses the A-field turns out to be a connection on a canonical gauge bundle. We also generalize to the non-abelian setting the discussion about "gauge bundles with non-integral Chern classes", relating them to twisted bundles with connection. Finally, we analyze the geometrical nature of the Wilson loop for each kind of gauge theory on a D-brane or stack of D-branes.
Resumo:
Since the discovery of D-branes as non-perturbative, dynamic objects in string theory, various configurations of branes in type IIA/B string theory and M-theory have been considered to study their low-energy dynamics described by supersymmetric quantum field theories.
One example of such a construction is based on the description of Seiberg-Witten curves of four-dimensional N = 2 supersymmetric gauge theories as branes in type IIA string theory and M-theory. This enables us to study the gauge theories in strongly-coupled regimes. Spectral networks are another tool for utilizing branes to study non-perturbative regimes of two- and four-dimensional supersymmetric theories. Using spectral networks of a Seiberg-Witten theory we can find its BPS spectrum, which is protected from quantum corrections by supersymmetry, and also the BPS spectrum of a related two-dimensional N = (2,2) theory whose (twisted) superpotential is determined by the Seiberg-Witten curve. When we don’t know the perturbative description of such a theory, its spectrum obtained via spectral networks is a useful piece of information. In this thesis we illustrate these ideas with examples of the use of Seiberg-Witten curves and spectral networks to understand various two- and four-dimensional supersymmetric theories.
First, we examine how the geometry of a Seiberg-Witten curve serves as a useful tool for identifying various limits of the parameters of the Seiberg-Witten theory, including Argyres-Seiberg duality and Argyres-Douglas fixed points. Next, we consider the low-energy limit of a two-dimensional N = (2, 2) supersymmetric theory from an M-theory brane configuration whose (twisted) superpotential is determined by the geometry of the branes. We show that, when the two-dimensional theory flows to its infra-red fixed point, particular cases realize Kazama-Suzuki coset models. We also study the BPS spectrum of an Argyres-Douglas type superconformal field theory on the Coulomb branch by using its spectral networks. We provide strong evidence of the equivalence of superconformal field theories from different string-theoretic constructions by comparing their BPS spectra.
Resumo:
In this paper we review some basic relations of algebraic K theory and we formulate them in the language of D-branes. Then we study the relation between the D8-branes wrapped on an orientable, compact manifold W in a massive Type IIA, supergravity background and the M9-branes wrapped on a compact manifold Z in a massive d = 11 supergravity background from the K-theoretic point of view. By interpreting the D8-brane charges as elements of K-0(C(W)) and the (inequivalent classes of) spaces of gauge fields on the M9-branes as the elements of K-0(C(Z) x ((k) over bar*) G) where G is a one-dimensional compact group, a connection between charges and gauge fields is argued to exists. This connection could be realized as a composition map between the corresponding algebraic K theory groups.
Resumo:
In this note we analyse the dynamical potential of a system of four Dp-branes at arbitrary angles. The equilibrium configurations for various values of the relative angles and distances among branes are discussed. The known configurations of parallel branes and brane-antibranes are obtained at extrema of the dynamical potential.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present the first-order corrected dynamics of fluid branes carrying higher-form charge by obtaining the general form of their equations of motion to pole-dipole order in the absence of external forces. Assuming linear response theory, we characterize the corresponding effective theory of stationary bent charged (an)isotropic fluid branes in terms of two sets of response coefficients, the Young modulus and the piezoelectric moduli. We subsequently find large classes of examples in gravity of this effective theory, by constructing stationary strained charged black brane solutions to first order in a derivative expansion. Using solution generating techniques and bent neutral black branes as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton gravity. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D-branes of type II string theory. By subsequently measuring the bending moment and the electric dipole moment which these geometries acquire due to the strain, we uncover that their form is captured by classical electroelasticity theory. In particular, we find that the Young modulus and the piezoelectric moduli of our strained charged black brane solutions are parameterized by a total of 4 response coefficients, both for the isotropic as well as anisotropic cases.
Resumo:
The intersection of the ten-dimensional fuzzy conifold Y-F(10) with S-F(5) x S-F(5) is the compact eight-dimensional fuzzy space X-F(8). We show that X-F(8) is (the analogue of) a principal U(1) x U(1) bundle over fuzzy SU(3) / U(1) x U(1)) ( M-F(6)). We construct M-F(6) using the Gell-Mann matrices by adapting Schwinger's construction. The space M-F(6) is of relevance in higher dimensional quantum Hall effect and matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in the basis of SU(3) eigenvectors. We construct the Dirac operator on M-F(6) from the Ginsparg-Wilson algebra on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results in the continuum.
Resumo:
Motivated by Ooguri and Vafa, we study superstrings in flat R-4 in a constant self-dual graviphoton background. The supergravity equations of motion are satisfied in this background which deforms the N = 2 d = 4 flat space super-Poincare algebra to another algebra with eight supercharges. A D-brane in this space preserves a quarter of the supercharges; i.e. N = 1/2 supersymmetry is realized linearly, and the remaining N = 3/2 supersymmetry is realized nonlinearly. The theory on the brane can be described as a theory in noncommutative superspace in which the chiral fermionic coordinates theta(alpha) of N = 1 d = 4 superspace are not Grassman variables but satisfy a Clifford algebra.
Resumo:
A classical action for open superstring field theory has been proposed which does not suffer from contact term problems. After generalizing this action to include the non-GSO projected states of the Neveu-Schwarz string, the pure tachyon contribution to the tachyon potential is explicitly computed. The potential has a minimum of V = 1/32g(2) which is 60% of the predicted exact minimum of V = 1/2 pi(2)g(2) from D-brane arguments.