926 resultados para D History General and Old World


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 16/06/2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 16/06/2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extrastriate cortex near the dorsal midline has been described as part of an 'express' pathway that provides visual input to the premotor cortex. This pathway is considered important for the integration of sensory information about the visual field periphery and the skeletomotor system, especially in relation to the control of arm movements. However, a better understanding of the functional contributions of different parts of this complex has been hampered by the lack of data on the extent and boundaries of its constituent visual areas. Recent studies in macaques have provided the first detailed view of the topographical organization of this region in Old World monkeys. Despite differences in nomenclature, a comparison of the visuotopic organization, myeloarchitecture and connections of the relevant visual areas with those previously studied in New World monkeys reveals a remarkable degree of similarity and helps to clarify the subdivision of function between different areas of the dorsomedial complex. A caudal visual area, named DM or V6, appears to be important for the detection of coherent patterns of movement across wide regions of the visual field, such as those induced during self-motion. A rostral area, named M or V6A, is more directly involved with visuomotor integration. This area receives projections both from DM/V6 and from a separate motion analysis channel, centred on the middle temporal visual area (or V5), which detects the movement of objects in extrapersonal space. These results support the suggestion, made earlier on the basis of more fragmentary evidence, that the areas rostral to the second visual area in dorsal cortex are homologous in all simian primates. Moreover, they emphasize the importance of determining the anatomical organization of the cortex as a prerequisite for elucidating the function of different cortical areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

vol. 9 lacks edition statement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contains sketches of the early settlers. Reprinted from the New England historical and genealogical register for Oct. 1851, v. 5, p. 389-402, 465-468, where it appeared anonymously under title "Old Dorchester, recovery of some materials for its history, general and particular."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On spine: The eastern world; ancient and modern.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Records with the search string biogeograph* were collected from the Science Citation Index (SCI). A total of 3456 records were downloaded for the 1945-2006 period from titles of articles and reviews, and 10,543 records were downloaded for 1991-2006, taking into consideration also abstracts and keywords. Temporal trends of publications, geographical and institutional distribution of the research output, authorship, and core journals were evaluated. There were as many as 122 countries carrying out biogeographic research; in the most recent period, USA is the top producing country, followed by the United Kingdom, Australia, France, Germany, Spain, and Canada. There were 17,493 authors contributing to the field. During 1991-2006 there were 4098 organizations with authors involved in biogeographic research; institutions with higher number of papers are the Natural History Museum (United Kingdom), the University of California, Berkeley (USA), the Museum National d'Histoire Naturelle (France), the Universidad Nacional Autónoma de México (Mexico), the American Museum of Natural History (USA) and the Russian Academy of Sciences (Russia). Research articles are spread over a variety of journals, with the Journal of Biogeography, Molecular Phylogenetics and Evolution, Molecular Ecology, and Biological Journal of the Linnean Society being the core journals. From 28,759 keywords retrieved those with the highest frequency were evolution, phylogeny, diversity, mitochondrial DNA, pattern(s), systematics, and population(s). We conclude that publications on biogeography have increased substantially during the last years, especially since 1998. The preferred journal for biogeographic papers is the Journal of Biogeography. Most frequent keywords seem to indicate that biogeography fits well within both evolutionary biology and ecology, with molecular biology and phylogenetics being important factors that drive their current development.