884 resultados para D History General and Old World
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Date of Acceptance: 16/06/2015
Resumo:
Date of Acceptance: 16/06/2015
Resumo:
Recent studies have revealed marked differences in the basal dendritic structure of layer III pyramidal cells in the cerebral cortex of adult simian primates. In particular, there is a consistent trend for pyramidal cells of increasing complexity with anterior progression through occipitotemporal cortical visual areas. These differences in pyramidal cell structure, and their systematic nature, are believed to be important for specialized aspects of visual processing within, and between, cortical areas. However, it remains unknown whether this regional specialization in the pyramidal cell phenotype is unique to simians, is unique to primates in general or is widespread amongst mammalian species. In the present study we investigated pyramidal cell structure in the prosimian galago (Otolemur garnetti). We found, as in simians, that the basal dendritic arbors of pyramidal cells differed between cortical areas. More specifically, pyramidal cells became progressively more spinous through the primary (V1), second (V2), dorsolateral (DL) and inferotemporal ( IT) visual areas. Moreover, pyramidal neurons in V1 of the galago are remarkably similar to those in other primate species, in spite of large differences in the sizes of this area. In contrast, pyramidal cells in inferotemporal cortex are quite variable among primate species. These data suggest that regional specialization in pyramidal cell phenotype was a likely feature of cortex in a common ancestor of simian and prosimian primates, but the degree of specialization varies between species. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
The growth hormone (GH) gene family represents an erratic and complex evolutionary pattern, involving many evolutionary events, such as multiple gene duplications, positive selection, the birth-and-death process and gene conversions. In the present study, we cloned and sequenced GH-like genes from three species of New World monkeys (NWM). Phylogenetic analysis strongly suggest monophyly for NWM GH-like genes with respect to those of Old World monkeys (OWM) and hominoids, indicating that independent gene duplications have occurred in NWM GH-like genes. There are three main clusters of genes in putatively functional NWM GH-like genes, according to our gene tree. Comparison of the ratios of nonsynonymous and synonymous substitutions revealed that these three clusters of genes evolved under different kinds of selective pressures. Detailed analysis of the evolution of pseudogenes showed that the evolutionary pattern of this gene family in platyrrhines is in agreement with the so-called birth-and-death process.
Resumo:
Human and great ape milks contain a diverse array of milk oligosaccharides, but little is known about the milk oligosaccharides of other primates, and how they differ among taxa. Neutral and acidic oligosaccharides were isolated from the milk of three species of Old World or catarrhine monkeys (Cercopithecidae: rhesus macaque (Macaca mulatta), toque macaque (Macaca sinica) and Hamadryas baboon (Papio hamadryas)) and three of New World or platyrrhine monkeys (Cebidae: tufted capuchin (Cebus apella) and Bolivian squirrel monkey (Saimiri boliviensis); Atelidae: mantled howler (Alouatta palliata)). The milks of these species contained 6-8% total sugar, most of which was lactose: the estimated ratio of oligosaccharides to lactose in Old World monkeys (1:4 to 1:6) was greater than in New World monkeys (1:12 to 1:23). The chemical structures of the oligosaccharides were determined mainly by (1)H-NMR spectroscopy. Oligosaccharides containing the type II unit (Gal(β1-4)GlcNAc) were found in the milk of the rhesus macaque, toque macaque, Hamadryas baboon and tufted capuchin, but oligosaccharides containing the type I unit (Gal(β1-3)GlcNAc), which have been found in human and many great ape milks, were absent from the milk of all species studied. Oligosaccharides containing Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) and 3-fucosyl lactose (3-FL, Gal(β1-4)[Fuc(α1-3)]Glc) were found in the milk of the three cercopithecid monkey species, while 2-fucosyl lactose (5'-FL, Fuc(α1-2)Gal(β1-4)Glc) was absent from all species studied. All of these milks contained acidic oligosaccharides that had N-acetylneuraminic acid as part of their structures, but did not contain oligosaccharides that had N-glycolylneuraminic acid, in contrast to the milk or colostrum of great apes which contain both types of acidic oligosaccharides. Two GalNAc-containing oligosaccharides, lactose 3'-O-sulfate and lacto-N-novopentaose I (Gal(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc) were found only in the milk of rhesus macaque, hamadryas baboon and tufted capuchin, respectively. Further research is needed to determine the extent to which the milk oligosaccharide patterns observed among these taxa represent wider phylogenetic trends among primates and how much variation occurs among individuals or species.
Resumo:
vol. 9 lacks edition statement.
Resumo:
Mode of access: Internet.
Resumo:
Contains sketches of the early settlers. Reprinted from the New England historical and genealogical register for Oct. 1851, v. 5, p. 389-402, 465-468, where it appeared anonymously under title "Old Dorchester, recovery of some materials for its history, general and particular."
Resumo:
On spine: The eastern world; ancient and modern.
Resumo:
Mode of access: Internet.
Resumo:
ObjectivesTo compare the sensitivity of inspections of cattle herds and adult fly trapping for detection of the Old World screw-worm fly (OWS). ProceduresThe incidence of myiases on animals and the number of OWS trapped with LuciTrap (R)/Bezzilure were measured concurrently on cattle farms on Sumba Island (Indonesia) and in peninsular Malaysia (two separate periods for the latter). The numbers of animal inspections and traps required to achieve OWS detection at the prevalent fly densities were calculated. ResultsOn Sumba Island, with low-density OWS populations, the sensitivity of herd inspections and of trapping for OWS detection was 0.30 and 0.85, respectively. For 95% confidence of detecting OWS, either 45 inspections of 74 animals or trapping with 5 sets of 4 LuciTraps for 14 days are required. In Malaysia, at higher OWS density, herd inspections of 600 animals (twice weekly, period 1) or 1600 animals (weekly, period 2) always detected myiases (sensitivity = 1), while trapping had sensitivities of 0.89 and 0.64 during periods 1 and 2, respectively. For OWS detection with 95% confidence, fewer than 600 and 1600 animals or 2 and 6 LuciTraps are required in periods 1 and 2, respectively. ConclusionsInspections of cattle herds and trapping with LuciTrap and Bezzilure can detect OWS populations. As a preliminary guide for OWS detection in Australia, the numbers of animals and traps derived from the Sumba Island trial should be used because the prevailing conditions better match those of northern Australia.
Resumo:
Background: Butterflies of the subtribe Mycalesina (Nymphalidae: Satyrinae) are important model organisms in ecology and evolution. This group has radiated spectacularly in the Old World tropics and presents an exciting opportunity to better understand processes of invertebrate rapid radiations. However, the generic-level taxonomy of the subtribe has been in a constant state of flux, and relationships among genera are unknown. There are six currently recognized genera in the group. Mycalesis, Lohora and Nirvanopsis are found in the Oriental region, the first of which is the most speciose genus among mycalesines, and extends into the Australasian region. Hallelesis and Bicyclus are found in mainland Africa, while Heteropsis is primarily Madagascan, with a few species in Africa. We infer the phylogeny of the group with data from three genes (total of 3139 bp) and use these data to reconstruct events in the biogeographic history of the group.,Results: The results indicate that the group Mycalesina radiated rapidly around the Oligocene-Miocene boundary. Basal relationships are unresolved, but we recover six well-supported clades. Some species of Mycalesis are nested within a primarily Madagascan clade of Heteropsis,while Nirvanopsis is nested within Lohora. The phylogeny suggests that the group had its origin either in Asia or Africa, and diversified through dispersals between the two regions, during the late Oligocene and early Miocene. The current dataset tentatively suggests that the Madagascan fauna comprises two independent radiations. The Australasian radiation shares a common ancestor derived from Asia. We discuss factors that are likely to have played a key role in the diversification of the group. Conclusions: We propose a significantly revised classification scheme for Mycalesina. We conclude that the group originated and radiated from an ancestor that was found either in Asia or Africa, with dispersals between the two regions and to Australasia. Our phylogeny paves the way for further comparative studies on this group that will help us understand the processes underlying diversification in rapid radiations of invertebrates.
Resumo:
Growth hormone is a classic molecule in the study of the molecular clock hypothesis as it exhibits a relatively constant rate of evolution in most mammalian orders except primates and artiodactyls, where dramatically enhanced rate of evolution (25-50-fold) has been reported. The rapid evolution of primate growth hormone occurred after the divergence of tarsiers and simians, but before the separation of old world monkeys (OWM) from new world monkeys (NWM). Interestingly, this event of rapid sequence evolution coincided with multiple duplications of the growth hormone gene, suggesting gene duplication as a possible cause of the accelerated sequence evolution. Here we determined 21 different GH-like sequences from four species of OWM and hominoids. Combining with published sequences from OWM and hominoids, our analysis demonstrates that multiple gene duplications and several gene conversion events both occurred in the evolutionary history of this gene family in OWM/hominoids. The episode of recent duplications of CSH-like genes in gibbon is accompanied with rapid sequence evolution likely resulting from relaxation of purifying selection. GHN genes in both hominoids and OWM are under strong purifying selection. In contrast, CSH genes in both lineages are probably not. GHV genes in OWM and hominoids evolved at different evolutionary rates and underwent different selective constraints. Our results disclosed the complex history of the primate growth hormone gene family and raised intriguing questions on the consequences of these evolutionary events. © 2005 Elsevier B.V. All rights reserved.