912 resultados para Cytotoxic phenotype
Resumo:
Angioinvasion/angiodestruction has been reported in a small subset of primary cutaneous anaplastic large-cell lymphomas (PCALCL). Recently, PCALCL with angioinvasive features and cytotoxic phenotype has been characterized as a variant associated with good clinical outcomes despite worrisome histopathologic features. We report a case of PCALCL with angioinvasive features and cytotoxic phenotype associated with reparative changes on the wall of medium-sized vessels involved by the neoplasm, including intimal fibroblastic proliferation and luminal obliteration. This vascular pattern, although previously unreported in PCALCL, is in accordance with the indolent behavior observed in this entity and provides a further link with lymphomatoid papulosis type E.
Resumo:
The case of an 82-year-old man who developed intraocular extension from mycosis fungoides, a cutaneous T-cell lymphoma, is presented. The patient died soon after intra-ocular involvement occurred. Immunohistochemistry of a skin biopsy, taken early in the course of the disease, disclosed a predominance of T cells with a helper/inducer phenotype (CD4). However, an intraocular infiltrate obtained 7 years later contained mostly T cells with a suppressor/cytotoxic phenotype (CD8). The occurrence of ocular invasion, the change in immunophenotype, and the predominant proliferation of CD8 lymphocytes may have been related to the poor outcome in this patient.
Resumo:
SUMMARY The Porcine Reproductive and Respiratory Syndrome (PRRS) virus is one of the most spread pathogens in swine herds all over the world and responsible for a reproductive and respiratory syndrome that causes severe heath and economical problems. This virus emerged in late 1980’s but although about 30 years have passed by, the knowledge about some essential facets related to the features of the virus (pathogenesis, immune response, and epidemiology) seems to be still incomplete. Taking into account that the development of modern vaccines is based on how innate and acquire immunity react, a more and more thorough knowledge on the immune system is needed, in terms of molecular modulation/regulation of the inflammatory and immune response upon PRRSV infection. The present doctoral thesis, which is divided into 3 different studies, is aimed to increase the knowledge about the interaction between the immune system and the PRRS virus upon natural infection. The objective of the first study entitled “Coordinated immune response of memory and cytotoxic T cells together with IFN-γ secreting cells after porcine reproductive and respiratory syndrome virus (PRRSV) natural infection in conventional pigs” was to evaluate the activation and modulation of the immune response in pigs naturally infected by PRRSV compared to an uninfected control group. The course of viremia was evaluated by PCR, the antibody titres by ELISA, the number of IFN-γ secreting cells (IFN- SC) by an ELISPOT assay and the immunophenotyping of some lymphocyte subsets (cytotoxic cells, memory T lymphocytes and cytotoxic T lymphocytes) by flow cytometry. The results showed that the activation of the cell-mediated immune response against PRRSV is delayed upon infection and that however the levels of IFN-γ SC and lymphocyte subsets subsequently increase over time. Furthermore, it was observed that the course of the different immune cell subsets is time-associated with the levels of PRRSV-specific IFN-γ SC and this can be interpreted based on the functional role that such lymphocyte subsets could have in the specific production/secretion of the immunostimulatory cytokine IFN-γ. In addition, these data support the hypothesis that the age of the animals upon the onset of infection or the diverse immunobiological features of the field isolate, as typically hypothesized during PRRSV infection, are critical conditions able to influence the qualitative and quantitative course of the cell-mediated immune response during PRRSV natural infection. The second study entitled “Immune response to PCV2 vaccination in PRRSV viremic piglets” was aimed to evaluate whether PRRSV could interfere with the activation of the immune response to PCV2 vaccination in pigs. In this trial, 200 pigs were divided into 2 groups: PCV2-vaccinated (at 4 weeks of age) and PCV2-unvaccinated (control group). Some piglets of both groups got infected by PRRSV, as determined by PRRSV viremia detection, so that 4 groups were defined as follows: PCV2 vaccinated - PRRSV viremic PCV2 vaccinated - PRRSV non viremic PCV2 unvaccinated - PRRSV viremic PCV2 unvaccinated - PRRSV non viremic The following parameters were evaluated in the 4 groups: number of PCV2-specific IFN-γ secreting cells, antibody titres by ELISA and IPMA. Based on the immunological data analysis, it can be deduced that: 1) The low levels of antibodies against PCV2 in the PCV2-vaccinated – PRRSV-viremic group at vaccination (4 weeks of age) could be related to a reduced colostrum intake influenced by PRRSV viremia. 2) Independently of the viremia status, serological data of the PCV2-vaccinated group by ELISA and IPMA does not show statistically different differences. Consequently, it can be be stated that, under the conditions of the study, PRRSV does not interfere with the antibody response induced by the PCV2 vaccine. 3) The cell-mediated immune response in terms of number of PCV2-specific IFN-γ secreting cells in the PCV2-vaccinated – PRRSV-viremic group seems to be compromised, as demonstrated by the reduction of the number of IFN-γ secreting cells after PCV2 vaccination, compared to the PCV2-vaccinated – PRRSV-non-viremic group. The data highlight and further support the inhibitory role of PRRSV on the development and activation of the immune response and highlight how a natural infection at early age can negatively influence the immune response to other pathogens/antigens. The third study entitled “Phenotypic modulation of porcine CD14+ monocytes, natural killer/natural killer T cells and CD8αβ+ T cell subsets by an antibody-derived killer peptide (KP)” was aimed to determine whether and how the killer peptide (KP) could modulate the immune response in terms of activation of specific lymphocyte subsets. This is a preliminary approach also aimed to subsequently evaluate such KP with a potential antivural role or as adjuvant. In this work, pig peripheral blood mononuclear cells (PBMC) were stimulated with three KP concentrations (10, 20 and 40 g/ml) for three time points (24, 48 and 72 hours). TIME POINTS (hours) KP CONCENTRATIONS (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 By using flow cytometry, the qualitative and quantitative modulation of the following immune subsets was evaluated upon KP stimulation: monocytes, natural killer (NK) cells, natural killer T (NKT) cells, and CD4+ and CD8α/β+ T lymphocyte subsets. Based on the data, it can be deduced that: 1) KP promotes a dose-dependent activation of monocytes, particularly after 24 hours of stimulation, by inducing a monocyte phenotypic and maturation shift mainly involved in sustaining the innate/inflammatory response. 2) KP induces a strong dose-dependent modulation of NK and NKT cells, characterized by an intense increase of the NKT cell fraction compared to NK cells, both subsets involved in the antibody-dependent cell cytotoxicity (ADCC). The increase is observed especially after 24 hours of stimulation. 3) KP promotes a significant activation of the cytotoxic T lymphocyte subset (CTL). 4) KP can modulate both the T helper and T cytotoxic phenotype, by inducing T helper cells to acquire the CD8α thus becoming doube positive cells (CD4+CD8+) and by inducing CTL (CD4-CD8+high) to acquire the double positive phenotype (CD4+CD8α+high). Therefore, KP may induce several effects on different immune cell subsets. For this reason, further research is needed aimed at characterizing each “effect” of KP and thus identifying the best use of the decapeptide for vaccination practice, therapeutic purposes or as vaccine adjuvant. RIASSUNTO Il virus della PRRS (Porcine Reproductive Respiratory Syndrome) è uno dei più diffusi agenti patogeni negli allevamenti suini di tutto il mondo, responsabile di una sindrome riproduttiva e respiratoria causa di gravi danni ad impatto sanitario ed economico. Questo virus è emerso attorno alla fine degli anni ’80 ma nonostante siano passati circa una trentina di anni, le conoscenze su alcuni punti essenziali che riguardano le caratteristiche del virus (patogenesi, risposta immunitaria, epidemiologia) appaiono ancora spesso incomplete. Considerando che lo sviluppo dei vaccini moderni è basato sui principi dell’immunità innata e acquisita è essenziale una sempre più completa conoscenza del sistema immunitario inteso come modulazione/regolazione molecolare della risposta infiammatoria e immunitaria in corso di tale infezione. Questo lavoro di tesi, suddiviso in tre diversi studi, ha l’intento di contribuire all’aumento delle informazioni riguardo l’interazione del sistema immunitario, con il virus della PRRS in condizioni di infezione naturale. L’obbiettivo del primo studio, intitolato “Associazione di cellule memoria, cellule citotossiche e cellule secernenti IFN- nella risposta immunitaria in corso di infezione naturale da Virus della Sindrome Riproduttiva e Respiratoria del Suino (PRRSV)” è stato di valutare l’attivazione e la modulazione della risposta immunitaria in suini naturalmente infetti da PRRSV rispetto ad un gruppo controllo non infetto. I parametri valutati sono stati la viremia mediante PCR, il titolo anticorpale mediante ELISA, il numero di cellule secernenti IFN- (IFN- SC) mediante tecnica ELISPOT e la fenotipizzazione di alcune sottopopolazioni linfocitarie (Cellule citotossiche, linfociti T memoria e linfociti T citotossici) mediante citofluorimetria a flusso. Dai risultati ottenuti è stato possibile osservare che l’attivazione della risposta immunitaria cellulo-mediata verso PRRSV appare ritardata durante l’infezione e che l’andamento, in termini di IFN- SC e dei cambiamenti delle sottopopolazioni linfocitarie, mostra comunque degli incrementi seppur successivi nel tempo. E’ stato inoltre osservato che gli andamenti delle diverse sottopopolazioni immunitarie cellulari appaiono temporalmente associati ai livelli di IFN- SC PRRSV-specifiche e ciò potrebbe essere interpretato sulla base del ruolo funzionale che tali sottopopolazioni linfocitarie potrebbero avere nella produzione/secrezione specifica della citochina immunoattivatrice IFN-. Questi dati inoltre supportano l’ipotesi che l’età degli animali alla comparsa dell’infezione o, come tipicamente ipotizzato nell’infezione da PRRSV, le differenti caratteristiche immunobiologiche dell’isolato di campo, sia condizioni critiche nell’ influenzare l’andamento qualitativo e quantitativo della risposta cellulo-mediata durante l’infezione naturale da PRRSV. Il secondo studio, dal titolo “Valutazione della risposta immunitaria nei confronti di una vaccinazione contro PCV2 in suini riscontrati PRRSV viremici e non viremici alla vaccinazione” ha avuto lo scopo di valutare se il virus della PRRS potesse andare ad interferire sull’attivazione della risposta immunitaria indotta da vaccinazione contro PCV2 nel suino. In questo lavoro sono stati arruolati 200 animali divisi in due gruppi, PCV2 Vaccinato (a 4 settimane di età) e PCV2 Non Vaccinato (controllo negativo). Alcuni suinetti di entrambi i gruppi, si sono naturalmente infettati con PRRSV, come determinato con l’analisi della viremia da PRRSV, per cui è stato possibile creare quattro sottogruppi, rispettivamente: PCV2 vaccinato - PRRSV viremico PCV2 vaccinato - PRRSV non viremico PCV2 non vaccinato - PRRSV viremico PCV2 non vaccinato - PRRSV non viremico Su questi quattro sottogruppi sono stati valutati i seguenti parametri: numero di cellule secernenti IFN- PCV2 specifiche, ed i titoli anticorpali mediante tecniche ELISA ed IPMA. Dall’analisi dei dati immunologici derivati dalle suddette tecniche è stato possibile dedurre che: I bassi valori anticorpali nei confronti di PCV2 del gruppo Vaccinato PCV2-PRRSV viremico già al periodo della vaccinazione (4 settimane di età) potrebbero essere messi in relazione ad una ridotta assunzione di colostro legata allo stato di viremia da PRRSV Indipendentemente dallo stato viremico, i dati sierologici del gruppo vaccinato PCV2 provenienti sia da ELISA sia da IPMA non mostrano differenze statisticamente significative. Di conseguenza è possibile affermare che in questo caso PRRSV non interferisce con la risposta anticorpale promossa dal vaccino PCV2. La risposta immunitaria cellulo-mediata, intesa come numero di cellule secernenti IFN- PCV2 specifiche nel gruppo PCV2 vaccinato PRRS viremico sembra essere compromessa, come viene infatti dimostrato dalla diminuzione del numero di cellule secernenti IFN- dopo la vaccinazione contro PCV2, comparata con il gruppo PCV2 vaccinato- non viremico. I dati evidenziano ed ulteriormente sostengono il ruolo inibitorio del virus della PRRSV sullo sviluppo ed attivazione della risposta immunitaria e come un infezione naturale ad età precoci possa influenzare negativamente la risposta immunitaria ad altri patogeni/antigeni. Il terzo studio, intitolato “Modulazione fenotipica di: monociti CD14+, cellule natural killer (NK), T natural killer (NKT) e sottopopolazioni linfocitarie T CD4+ e CD8+ durante stimolazione con killer peptide (KP) nella specie suina” ha avuto come scopo quello di stabilire se e come il Peptide Killer (KP) potesse modulare la risposta immunitaria in termini di attivazione di specifiche sottopopolazioni linfocitarie. Si tratta di un approccio preliminare anche ai fini di successivamente valutare tale KP in un potenziale ruolo antivirale o come adiuvante. In questo lavoro, periferal blood mononuclear cells (PBMC) suine sono state stimolate con KP a tre diverse concentrazioni (10, 20 e 40 g/ml) per tre diversi tempi (24, 48 e 72 ore). TEMPI DI STIMOLAZIONE (ore) CONCENTRAZIONE DI KP (g/ml) 24 0-10-20-40 48 0-10-20-40 72 0-10-20-40 Mediante la citometria a flusso è stato dunque possibile analizzare il comportamento qualitativo e quantitativo di alcune sottopopolazioni linfocitarie sotto lo stimolo del KP, tra cui: monociti, cellule Natural Killer (NK), cellule T Natural Killer (NKT) e linfociti T CD4 e CD8+. Dai dati ottenuti è stato possibile dedurre che: 1) KP promuove un’attivazione dei monociti dose-dipendente in particolare dopo 24 ore di stimolazione, inducendo uno “shift” fenotipico e di maturazione monocitaria maggiormente coinvolto nel sostegno della risposta innata/infiammatoria. 2) KP induce una forte modulazione dose-dipendente di cellule NK e NKT con un forte aumento della frazione delle cellule NKT rispetto alle NK, sottopopolazioni entrambe coinvolte nella citotossicità cellulare mediata da anticorpi (ADCC). L’aumento è riscontrabile soprattutto dopo 24 ore di stimolazione. 3) KP promuove una significativa attivazione della sottopopolazione del linfociti T citotossici (CTL). 4) Per quanto riguarda la marcatura CD4+/CD8+ è stato dimostrato che KP ha la capacità di modulare sia il fenotipo T helper che T citotossico, inducendo le cellule T helper ad acquisire CD8 diventando quindi doppio positive (CD4+CD8+) ed inducendo il fenotipo CTL (CD4-CD8+high) ad acquisire il fenotipo doppio positivo (CD4+CD8α+high). Molti dunque potrebbero essere gli effetti che il decapeptide KP potrebbe esercitare sulle diverse sottopopolazioni del sistema immunitario, per questo motivo va evidenziata la necessità di impostare e attuare nuove ricerche che portino alla caratterizzazione di ciascuna “abilità” di KP e che conducano successivamente alla scoperta del migliore utilizzo che si possa fare del decapeptide sia dal punto di vista vaccinale, terapeutico oppure sotto forma di adiuvante vaccinale.
Resumo:
Several H-2 defined cell lines were examined for their ability to support infection and replication of Japanese encephalitis virus (JEV) before their use in in vitro and in vivo stimulation protocols for generating cytotoxic T lymphocytes (CTLs) against JEV. Among II different cell lines tested, two H-2(d) macrophage tumour lines (P388D1, RAW 264.7), an H-2(d) hybridoma (Sp2/0), an H-2K(k)D(d) neuroblastoma (Neuro 2a), and H-2(k) fibroblast cell line (L929) were found to support JEV infection and replication. These cell lines were used to generate anti-JEV CTLs by using in vivo immunization followed by in vitro stimulation of BALB/c mice. We observed that not only syngeneic and allogeneic infected cells but also JEV-infected xenogeneic cells could prime BALB/c mice for the generation of JEV-specific CTLs upon subsequent in vitro stimulation of splenocytes with JEV-infected syngeneic cells. Although infected xenogeneic cells were used for immunization, the anti-JEV effecters that were generated lysed infected syngeneic targets but not JEV-infected xenogeneic or allogeneic target cells in a 5h Cr-51 release assay. These anti-JEV effecters recognized syngeneic target cells infected with West Nile virus to a lesser extent and were shown to be Lyt-2.2(+) T cells. The results of unlabelled cold target competition studies suggested alterations in the cell surface expression of viral antigenic determinants recognized by these CTLs. We further demonstrate that the JEV-specific CTLs generated could virtually block the release of infectious virus particles from infected P388D1 and Neuro 2a cells in vitro.
Resumo:
Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.
Resumo:
Fusion of nonmetastatic murine melanoma K1735 C19H cells with metastatic human melanoma A375 C15N cells resulted in a hybrid (termed H7) which was highly metastatic in a nude mouse model. The H7 hybrid retained chromosome 17 as the sole intact human chromosome in the cell. A lung bioassay showed that the K1735 C19H cells were present in the lungs of nude mice with s.c. tumors, yet at 6-weeks after tumor resection, no cells remained in the lung and therefore did not form lung metastases. Examination of various phenotypic properties such as in vivo and in vitro growth demonstrated that phenotypically the H7 hybrid was most like the K1735 C19H cell line except for its metastatic ability. In contrast the H7 hybrid cells containing single or multiple copies of human chromosome 17 with a point mutation at codon 249 (arg-gly) of the p53 gene, readily formed lung metastases. A plasmid containing the human p53 from the H7 hybrid and four other contructs with mutations at codon 143 (val-arg), 175 (arg-his), 249 (arg-ser) and 273 (arg-his) were transfected into K1735 C19H cells. K1735 C19H cells expressing human p53 genes with mutations at codons 249, both the arg-ser mutation and the mutation from the H7 hybrid and 273 produced significantly more lung metastases.^ In vitro assays demonstrated that responses to various cytotoxic and DNA damaging agents varied with the presence of mutant p53 and with the type of agent used. When cultured in mouse lung-conditioned medium, the K1735 C19H cell line was growth-inhibited, while cells containing a mutant human p53 (either on the whole chromosome 17, as in the H7 hybrid cells or from a stably transfected construct) were growth stimulated. Western blot analysis of lung-conditioned media derived from either 6-month or 15-month old mice has detected high levels of soluble Fas ligand in the medium from older animals. Comparison of the levels of Fas receptor on the K1735 C19H cell line and the H7 hybrid were almost identical, but 50% of the K1735 C19H cells were killed in the presence of anti-Fas antibody as opposed to 7% of the H7 hybrid cells. The growth-inhibitory effects of the lung-conditioned medium on the K1735 C19H cells were abrogated by coculture with Fas-Fc, which competes with the Fas ligand for receptor binding. Growth-inhibition of the K1735 C19H was 54% when cultured in 60 $\mu$g/0.2 ml lung-conditioned medium and a control Fc, with only 9% inhibition in 60 $\mu$g/0.2 ml lung-conditioned medium and Fas-Fc. Growth of the H7 cells and K1735 C19H cells transfected with various mutant human p53 genes were unchanged by the presence of either the control Fc or the Fas-Fc. This indicates that the presence of human chromosome 17, and mutant p53 in part protects the cells from Fas:Fas ligand induced apoptosis, and allows the growth of lung metastases. ^
Resumo:
The immunodominant, CD8+ cytotoxic T lymphocyte (CTL) response to the HLA-B8-restricted peptide, RAKFKQLL, located in the Epstein–Barr virus immediate-early antigen, BZLF1, is characterized by a diverse T cell receptor (TCR) repertoire. Here, we show that this diversity can be partitioned on the basis of crossreactive cytotoxicity patterns involving the recognition of a self peptide—RSKFRQIV—located in a serine/threonine kinase and a bacterial peptide—RRKYKQII—located in Staphylococcus aureus replication initiation protein. Thus CTL clones that recognized the viral, self, and bacterial peptides expressed a highly restricted αβ TCR phenotype. The CTL clones that recognized viral and self peptides were more oligoclonal, whereas clones that strictly recognized the viral peptide displayed a diverse TCR profile. Interestingly, the self and bacterial peptides equally were substantially less effective than the cognate viral peptide in sensitizing target cell lysis, and also resulted only in a weak reactivation of memory CTLs in limiting dilution assays, whereas the cognate peptide was highly immunogenic. The described crossreactions show that human antiviral, CD8+ CTL responses can be shaped by peptide ligands derived from autoantigens and environmental bacterial antigens, thereby providing a firm structural basis for molecular mimicry involving class I-restricted CTLs in the pathogenesis of autoimmune disease.
Resumo:
Inhibition of cell growth and transformation can be achieved in transformed glial cells by disabling erbB receptor signaling. However, recent evidence indicates that the induction of apoptosis may underlie successful therapy of human cancers. In these studies, we examined whether disabling oncoproteins of the erbB receptor family would sensitize transformed human glial cells to the induction of genomic damage by γ-irradiation. Radioresistant human glioblastoma cells in which erbB receptor signaling was inhibited exhibited increased growth arrest and apoptosis in response to DNA damage. Apoptosis was observed after radiation in human glioma cells containing either a wild-type or mutated p53 gene product and suggested that both p53-dependent and -independent mechanisms may be responsible for the more radiosensitive phenotype. Because cells exhibiting increased radiation-induced apoptosis were also capable of growth arrest in serum-deprived conditions and in response to DNA damage, apoptotic cell death was not induced simply as a result of impaired growth arrest pathways. Notably, inhibition of erbB signaling was a more potent stimulus for the induction of apoptosis than prolonged serum deprivation. Proximal receptor interactions between erbB receptor members thus influence cell cycle checkpoint pathways activated in response to DNA damage. Disabling erbB receptors may improve the response to γ-irradiation and other cytotoxic therapies, and this approach suggests that present anticancer strategies could be optimized.
Resumo:
Selective destruction of malignant tumor cells without damaging normal cells is an important goal for cancer chemotherapy in the 21st century. Differentiating agents that transform cancer cells to either a nonproliferating or normal phenotype could potentially be tissue-specific and avoid side effects of current drugs. However, most compounds that are presently known to differentiate cancer cells are histone deacetylase inhibitors that are of low potency or suffer from low bioavailability, rapid metabolism, reversible differentiation, and nonselectivity for cancer cells over normal cells. Here we describe 36 nonpeptidic compounds derived from a simple cysteine scaffold, fused at the C-terminus to benzylamine, at the N-terminus to a small library of carboxylic acids, and at the S-terminus to 4-butanoyl hydroxamate. Six compounds were cytotoxic at nanomolar concentrations against a particularly aggressive human melanoma cell line (MM96L), four compounds showed selectivities of greater than or equal to5:1 for human melanoma over normal human cells (NFF), and four of the most potent compounds were further tested and found to be cytotoxic for six other human cancer cell lines (melanomas SK-MEL-28, DO4; prostate DU145; breast MCF-7; ovarian JAM, CI80-13S). The most active compounds typically caused hyperacetylation of histones, induced p21 expression, and reverted phenotype of surviving tumor cells to a normal morphology. Only one compound was given orally at 5 mg/kg to healthy rats to look for bioavailaiblity, and it showed reasonably high levels in plasma (C-max 6 mug/mL, T-max 15 min) for at least 4 h. Results are sufficiently promising to support further work on refining this and related classes of compounds to an orally active, more tumor-selective, antitumor drug.
Resumo:
Extended spectrum β-lactamases or ESBLs, which are derived from non-ESBL precursors by point mutation of β-lactamase genes (bla), are spreading rapidly all over the world and have caused considerable problems in the treatment of infections caused by bacteria which harbour them. The mechanism of this resistance is not fully understood and a better understanding of these mechanisms might significantly impact on choosing proper diagnostic and treatment strategies. Previous work on SHV β-lactamase gene, blaSHV, has shown that only Klebsiella pneumoniae strains which contain plasmid-borne blaSHV are able to mutate to phenotypically ESBL-positive strains and there was also evidence of an increase in blaSHV copy number. Therefore, it was hypothesised that although specific point mutation is essential for acquisition of ESBL activity, it is not yet enough, and blaSHV copy number amplification is also essential for an ESBL-positive phenotype, with homologous recombination being the likely mechanism of blaSHV copy number expansion. In this study, we investigated the mutation rate of non-ESBL expressing K. pneumoniae isolates to an ESBL-positive status by using the MSS-maximum likelihood method. Our data showed that blaSHV mutation rate of a non-ESBL expressing isolate is lower than the mutation rate of the other single base changes on the chromosome, even with a plasmid-borne blaSHV gene. On the other hand, mutation rate from a low MIC ESBL-positive (≤ 8 µg/mL for cefotaxime) to high MIC ESBL-positive (≥16 µg/mL for cefotaxime) is very high. This is because only gene copy number increase is needed which is probably mediated by homologous recombination that typically takes place at a much higher frequencies than point mutations. Using a subinhibitory concentration of novobiocin, as a homologous recombination inhibitor, revealed that this is the case.
Resumo:
Cutaneous malignant melanoma (CMM) is a major health issue in Queensland, Australia, which has the world’s highest incidence. Recent molecular and epidemiologic studies suggest that CMM arises through multiple etiological pathways involving gene-environment interactions. Understanding the potential mechanisms leading to CMM requires larger studies than those previously conducted. This article describes the design and baseline characteristics of Q-MEGA, the Queensland Study of Melanoma: Environmental and Genetic Associations, which followed up 4 population-based samples of CMM patients in Queensland, including children, adolescents, men aged over 50, and a large sample of adult cases and their families, including twins. Q-MEGA aims to investigate the roles of genetic and environmental factors, and their interaction, in the etiology of melanoma. Three thousand, four hundred and seventy-one participants took part in the follow-up study and were administered a computer-assisted telephone interview in 2002-2005. Updated data on environmental and phenotypic risk factors, and 2777 blood samples were collected from interviewed participants as well as a subset of relatives. This study provides a large and well-described population-based sample of CMM cases with follow-up data. Characteristics of the cases and repeatability of sun exposure and phenotype measures between the baseline and the follow-up surveys, from 6 to 17 years later, are also described.
Resumo:
Over the years, approaches to obesity prevention and treatment have gone from focusing on genetic and other biological factors to exploring a diversity of diets and individual behavior modification interventions anchored primarily in the power of the mind, to the recent shift focusing on societal interventions to design ";temptation-proof"; physical, social, and economic environments. In spite of repeated calls to action, including those of the World Health Organization (WHO), the pandemic continues to progress. WHO recently projected that if the current lifestyle trend in young and adult populations around the world persist, by 2012 in countries like the USA, health care costs may amount to as much as 17.7% of the GDP. Most importantly, in large part due to the problems of obesity, those children may be the first generation ever to have a shorter life expectancy than that of their parents. This work presents the most current research and proposals for addressing the pandemic. Past studies have focused primarly on either genetic or behavioral causes for obesity, however today's research indicates that a strongly integrated program is the best prospect for success in overcoming obesity. Furthermore, focus on the role of society in establishing an affordable, accessible and sustainable program for implementing these lifestyle changes is vital, particularly for those in economically challenged situations, who are ultimately at the highest risk for obesity. Using studies from both neuroscience and behavioral science to present a comprehensive overview of the challenges and possible solutions, The brain-to-society approach to obesity prevention focuses on what is needed in order to sustain a healthy, pleasurable and affordable lifestyle.
Resumo:
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person’s membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson’s disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson’s Disease Rating Scale (UPDRS).