725 resultados para Cytosolic Sulfotransferases


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

inorganic sulfate is required for numerous functions in mammalian physiology, and its circulating levels are proposed to be maintained by the Na+-SO42- cotransporter, (NaSi-1). To determine the role of NaSi-1 in sulfate homeostasis and the physiological consequences in its absence, we have generated a mouse lacking a functional NaSi-1 gene, Nas1. Serum sulfate concentration was reduced by >75% in Nas1(-/-) mice when compared with Nas1(+/+) mice. Nas1(-/-) mice exhibit increased urinary sulfate excretion, reduced renal and intestinal Na+-SO42- cotransport, and a general growth retardation. Nas1(-/-) mouse body weight was reduced by >20% when compared with Nas1(+/+) and Nas1(+/-) littermates at 2 weeks of age and remained so throughout adulthood. Nas1(-/-) females had a lowered fertility, with a 60% reduction in litter size. Spontaneous clonic seizures were observed in Nas1(-/-) mice from 8 months of age. These data demonstrate NaSi-1 is essential for maintaining sulfate homeostasis, and its expression is necessary for a wide range of physiological functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human SULT1A1 is primarily responsible for sulfonation of xenobiotics, including the activation of promutagens, and it has been implicated in several forms of cancer. Human SULT1A3 has been shown to be the major sulfotransferase that sulfonates dopamine. These two enzymes shares 93% amino acid sequence identity and have distinct but overlapping substrate preferences. The resolution of the crystal structures of these two enzymes has enabled us to elucidate the mechanisms controlling their substrate preferences and inhibition. The presence of two p-nitrophenol (pNP) molecules in the crystal structure of SULT1A1 was postulated to explain cooperativity at low and inhibition at high substrate concentrations, respectively. In SULT1A1, substrate inhibition occurs with pNP as the substrate but not with dopamine. For SULT1A3, substrate inhibition is found for dopamine but not with pNP. We investigated how substrate inhibition occurs in these two enzymes using molecular modeling, site-directed mutagenesis, and kinetic analysis. The results show that residue Phe-247 of SULT1A1, which interacts with both p-nitrophenol molecules in the active site, is important for substrate inhibition. Mutation of phenylalanine to leucine at this position in SULT1A1 results in substrate inhibition by dopamine. We also propose, based on modeling and kinetic studies, that substrate inhibition by dopamine in SULT1A3 is caused by binding of two dopamine molecules in the active site. © 2004 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of the amino and carboxyl-terminal regions of cytosolic serine hydroxymethyltransferase (SHMT) in subunit assembly and catalysis was studied using six amino-terminal (lacking the first 6, 14, 30, 49, 58, and 75 residues) and two carboxyl-terminal (lacking the last 49 and 185 residues) deletion mutants. These mutants were constructed from a full length cDNA clone using restriction enzyme/PCR-based methods and overexpressed in Escherichia coli. The overexpressed proteins, des-(A1-K6)-SHMT and des-(A1- W14)-SHMT were present in the soluble fraction and they were purified to homogeneity. The deletion clones, for des-(A1–V30)-SHMT and des-(A1–L49)-SHMT were expressed at very low levels, whereas des-(A1–R58)-SHMT, des-(A1–G75)-SHMT, des-(Q435–F483)-SHMT and des-(L299-F483)-SHMT mutant proteins were not soluble and formed inclusion bodies. Des-(A1–K6)-SHMT and des-(A1–W14)-SHMT catalyzed both the tetrahydrofolate-dependent and tetrahydrofolate-independent reactions, generating characteristic spectral intermediates with glycine and tetrahydrofolate. The two mutants had similar kinetic parameters to that of the recombinant SHMT (rSHMT). However, at 55 °C, the des-(A1–W14)-SHMT lost almost all the activity within 5 min, while at the same temperature rSHMT and des-(A1–K6)-SHMT retained 85% and 70% activity, respectively. Thermal denaturation studies showed that des-(A1–W14)-SHMT had a lower apparent melting temperature (52°C) compared to rSHMT (56°C) and des-(A1–K6)-SHMT (55 °C), suggesting that N-terminal deletion had resulted in a decrease in the thermal stability of the enzyme. Further, urea induced inactivation of the enzymes revealed that 50% inactivation occurred at a lower urea concentration (1.2 ± 0.1 M) in the case of des-(A1–W14)-SHMT compared to rSHMT (1.8 ±0.1 M) and des-(A1–K6)-SHMT (1.7 ±0.1 M). The apoenzyme of des-(A1- W14)-SHMT was present predominantly in the dimer form, whereas the apoenzymes of rSHMT and des-(A1–K6)-SHMT were a mixture of tetramers (≈75% and ≈65%, respectively) and dimers. While, rSHMT and des-(A1–K6)-SHMT apoenzymes could be reconstituted upon the addition of pyridoxal-5'-phosphate to 96% and 94% enzyme activity, respectively, des-(A1–W14)-SHMT apoenzyme could be reconstituted only upto 22%. The percentage activity regained correlated with the appearance of visible CD at 425 nm and with the amount of enzyme present in the tetrameric form upon reconstitution as monitored by gel filtration. These results demonstrate that, in addition to the cofactor, the N-terminal arm plays an important role in stabilizing the tetrameric structure of SHMT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Role Of The Amino And Carboxyl-Terminal Regions Of Cytosolic Serine Hydroxymethyltransferase (SHMT) In Subunit Assembly And Catalysis Was Studied Using Sis Amino-Terminal (Lacking The First 6, 14, 30, 49, 58, And 75 Residues) And Two Carboxyl-Terminal (Lacking The Last 49 And 185 Residues) Deletion Mutants. These Mutants Were Constructed From A Full Length Cdna Clone Using Restriction Enzyme/PCR-Based Methods And Overexpressed In Escherichia Coli. The Overexpressed Proteins, Des-(A1-K6) SHMT And Des-(A1-W14)-SHMT Were Present In The Soluble Fraction And They Were Purified To Homogeneity. The Deletion Clones, For Des-(A1-V30)-SHMT And Des-(A1-L49)-SHMT Were Expressed At Very Low Levels, Whereas Des-(A1-R58)-SHMT, Des-/A1-G75)-SHMT, Des-(Q435-F483)-SHMT And Des-(L299-F483)-SHMT Mutant Proteins Were Not Soluble And Formed Inclusion Bodies. Des-(A1-K6)-SHMT And Des-(A1-W14)-SHMT Catalyzed Both The Tetrahydrofolate-Dependent And Tetrahydrofolate-Independent Reactions, Generating Characteristic Spectral Intermediates With Glycine And Tetrahydrofolate. The Two Mutants Had Similar Kinetic Parameters To That Of The Recombinant SHMT (Rshmt). However, At 55 Degrees C, The Des-(A1-W14)-SHMT Lost Almost All The Activity Within 5 Min, While At The Same Temperature Rshmt And Des-(A1-K6)-SHMT Retained 85% And 70% Activity, Respectively. Thermal Denaturation Studies Showed That Des-(A1-W14)-SHMT Had A Lower Apparent Melting Temperature (52 Degrees C) Compared To Rshmt (56 Degrees C) And Des-(A1-K6)-SHMT (55 Degrees C), Suggesting That N-Terminal Deletion Had Resulted In A Decrease In The Thermal Stability Of The Enzyme. Further Urea Induced Inactivation Of The Enzymes Revealed That 50% Inactivation Occurred At A Lower Urea Concentration (1.2+/-0.1 M) In The Case Of Des-(A1-W14)-SHMT Compared To Rshmt (1.8+/-0.1 M) And Des-(A1 -K6)-SHMT (1.7+/-0.1 M). The Apoenzyme Of Des-/A1-K6)-SHMT Was Present Predominantly In The Dimer Form, Whereas The Apoenzymes Of Rshmt And Des-(A1-K6)-SHMT Were A Mixture Of Tetramers (Approximate To 75% And Approximate To 65%, Respectively) And Dimers. While, Rshmt And Des-(A1-K6)-SHMT Apoenzymes Could Be Reconstituted Upon The Addition Of Pyridoxal-5'-Phosphate To 96% And 94% Enzyme Activity, Respectively Des-(A1-W14)-SHMT Apoenzyme Could Be Reconstituted Only Upto 22%. The Percentage Activity Refined Correlated With The Appearance Of Visible CD At 425 Nm And With The Amount Of Enzyme Present In The Tetrameric Form Upon Reconstitution As Monitored By Gel Filtration. These Results Demonstrate That, In Addition To The Cofactor, The N-Terminal Arm Plays An Important Role In Stabilizing The Tetrameric Structure Of SHMT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory effect of FeSO4-dependent cytosolic protein on microsomal HMGCoA reductase is on the enzyme activity and not an artifact of loss of the product, mevalonate, through phosphorylation, unlike that of ATP.Mg effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to unravel the role of conserved histidine residues in the structure-function of sheep liver cytosolic serine hydroxymethyltransferase (SHMT), three site-specific mutants (H134N, H147N, and H150N) were constructed and expressed, H134N and H147N SHMTs had K-m values for L-serine, L-allo-threonine and beta-phenylserine similar to that of wild type enzyme, although the k(cat) values were markedly decreased, H134N SHMT was obtained in a dimeric form with only 6% of bound pyridoxal 5'-phosphate (PLP) compared with the wild type enzyme, Increasing concentrations of PLP (up to 500 mu M) enhanced the enzyme activity without changing its oligomeric structure, indicating that His-134 may be involved in dimer-dimer interactions, H147N SHMT was obtained in a tetrameric form but with very little PLP (3%) bound to it, suggesting that this residue was probably involved in cofactor binding, Unlike the wild type enzyme, the cofactor could be easily removed by dialysis from H147N SHMT, and the apoenzyme thus formed was present predominantly in the dimeric form, indicating that PLP binding is at the dimer-dimer interface, H150N SHMT was obtained in a tetrameric form with bound PLP, However, the mutant had very little enzyme activity (<2%). The k(cat)/K-m values for L-serine, L-allo-threonine and beta-phenylserine were 80-, 56-, and SS-fold less compared with wild type enzyme, Unlike the wild type enzyme, it failed to form the characteristic quinonoid intermediate and was unable to carry out the exchange of 2-S proton from glycine in the presence of H-4-folate. However, it could form an external aldimine with serine and glycine, The wild type and the mutant enzyme had similar K-d values for serine and glycine, These results suggest that His-150 may be the base that abstracts the alpha-proton of the substrate, leading to formation of the quinonoid intermediate in the reaction catalyzed by SHMT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5'-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, beta-phenylserine or d-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4x10(-4) s-1 at 50 microM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 microM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 microM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 microM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 degrees C) than that of the wild-type enzyme (56 degrees C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently 'open' form and the increased apparent Tm could be due to enhanced subunit interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sheep liver cDNA clone for the cytosolic serine hydroxymethyltransferase (SHMT) was isolated and its nucleotide sequence determined. The full-length cDNA of SHMT was placed under the control of T7 promoter in pET-3C plasmid and expressed in Escherichia coli. The overexpressed enzyme, present predominantly in the soluble fraction, was catalytically active. The recombinant SHMT was purified to homogeneity with a yield of 10 mg/l bacterial culture. The recombinant enzyme was capable of carrying out tetrahydrofolate-dependent and tetrahydrofolate-independent reactions as effectively as the native enzyme. The K-m values for serine (1 mM) and tetrahydrofolate (0.82 mM) were similar to those of the native enzyme. The recombinant enzyme had a characteristic visible spectrum indicative of the presence of pyridoxal 5'-phosphate as an internal aldimine. The apoenzyme obtained upon removal of the cofactor was inactive and could be reconstituted by the addition of pyridoxal 5'-phosphate demonstrating that the recombinant SHMT was functionally very similar to the native SHMT. This overexpression of eukaryotic tetrameric SHMT in E. coli and the purification and characterization of the recombinant enzyme should thus allow studies on the role of specific amino acids and domains in the activity of the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The positive element (PE) (-69 to -98 bp) within the 5'-proximal region of the CYP2B1B2 gene (+1 to -179 bp) of rat liver is essential for phenobarbitone (PB) response and gives a single major complex with the rat liver cytosol in gel shift analysis. This complex corresponds to complex I (top) of the three complexes given by the nuclear extracts. PB treatment of rats leads to a decrease in complex I formation with the cytosol and PE and an increase in the same with the nuclear extract in gel shift analysis. Both the changes are counteracted by simultaneous okadaic acid administration. The nuclear protein giving rise to complex I has been isolated and has an M-r of 26 kDa. The cytosolic counterpart consists of two species, 26 and 28 kDa, as revealed by Southwestern blot analysis using labeled PE. It is concluded that PB treatment leads to the translocation accompanied by processing of the cytosolic protein species into the nucleus that requires protein dephosphorylation. It is suggested that PB may exert a global regulation on the transcription of many genes by modulating the phosphorylation status of different protein factors involved in transcriptional regulation. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curcumin, a principal component of turmeric, acts as an immunomodulator regulating the host defenses in response to a diseased condition. The role of curcumin in controlling certain infectious diseases is highly controversial. It is known to alleviate symptoms of Helicobacter pylori infection and exacerbate that of Leishmania infection. We have evaluated the role of curcumin in modulating the fate of various intracellular bacterial pathogens. We show that pretreatment of macrophages with curcumin attenuates the infections caused by Shigella flexneri (clinical isolates) and Listeria monocytogenes and aggravates those caused by Salmonella enterica serovar Typhi CT18 (a clinical isolate), Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Yersinia enterocolitica. Thus, the antimicrobial nature of curcumin is not a general phenomenon. It modulated the intracellular survival of cytosolic (S. flexneri and L. monocytogenes) and vacuolar (Salmonella spp., Y. enterocolitica, and S. aureus) bacteria in distinct ways. Through colocalization experiments, we demonstrated that curcumin prevented the active phagosomal escape of cytosolic pathogens and enhanced the active inhibition of lysosomal fusion by vacuolar pathogens. A chloroquine resistance assay confirmed that curcumin retarded the escape of the cytosolic pathogens, thus reducing their inter- and intracellular spread. We have demonstrated that the membrane-stabilizing activity of curcumin is crucial for its differential effect on the virulence of the bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytosolic nucleotidase II (cN-II) from Legionellapneumophila (Lp) catalyzes the hydrolysis of GMP and dGMP displaying sigmoidal curves, whereas catalysis of IMP hydrolysis displayed a biphasic curve in the initial rate versus substrate concentration plots. Allosteric modulators of mammalian cN-II did not activate LpcN-II although GTP, GDP and the substrate GMP were specific activators. Crystal structures of the tetrameric LpcN-II revealed an activator-binding site at the dimer interface. A double mutation in this allosteric-binding site abolished activation, confirming the structural observations. The substrate GMP acting as an activator, partitioning between the allosteric and active site, is the basis for the sigmoidicity of the initial velocity versus GMP concentration plot. The LpcN-II tetramer showed differences in subunit organization upon activator binding that are absent in the activator-bound human cN-II structure. This is the first observation of a structural change induced by activator binding in cN-II that may be the molecular mechanism for enzyme activation. DatabaseThe coordinates and structure factors reported in this paper have been submitted to the Protein Data Bank under the accession numbers and . The accession number of GMP complexed LpcN-II is . Structured digital abstract andby() andby() Structured digital abstract was added on 5 March 2014 after original online publication]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An iron(III) salicylate having a dipicolylamine base (andpa) with a photoactive anthracenyl moiety is prepared, characterized, and studied for its photo-induced anticancer activity and cellular localization in HeLa and MCF-7 cells. Its phenyl analogue is structurally characterized by X-ray crystallography. The complex has a ternary structure in which the dipicolylamine ligand and salicylic acid in dianionic form (sal) display respective tridentate and bidentate mode of coordination in Fe(sal)(phdpa)Cl] (1). Complex Fe(sal)(andpa)Cl] (2) having a pendant anthracenyl moiety shows significant photocytotoxicity in visible light (400-700 nm) giving IC50 values of 8.6 +/- 0.7 and 3.4 +/- 0.9 mu M in HeLa and MCF-7 cells, while being essentially nontoxic in the dark (IC50 > 100 mu M). The complex shows cytosolic localization in the cancer cells. Formation of hydroxyl radicals ((OH)-O-center dot) as the reactive oxygen species is evidenced from the pUC19 DNA photocleavage studies. (C) 2015 Elsevier Ltd. All rights reserved.