966 resultados para Cytoplasmic and Nuclear
Resumo:
Cadherins are crucial molecules mediating cell-cell interactions between somatic and germline cells in insect and mammalian male and female gonads. We analysed the presence and localization of cadherins in ovaries of honeybee queens and in testes of drones. Transcripts representing two classical cadherins, E-cadherin (shotgun) and N-cadherin, as well as three protocadherins (Starry night, Fat and Fat-like) were detected in gonads of both sexes. Pan-cadherin antibodies, which most probably detect a honeybee N-cadherin, were used in immunolocalization analyses. In the germarium of ovarioles, cadherin-IR (cadherin immunoreactivity) was evidenced as homogeneously distributed in the cytoplasm and as nuclear foci, in both germline and somatic cells. It was also detected in polyfusomes and ring canals. In testiolar tubules, cadherin-IR showed a cytoplasmic and nuclear distributon alike in ovaries. The unexpected nuclear localization and cytoplasmic distribution in ovaries and testes were corroborated by immunogold electron microscopy, which revealed cadherin aggregates associated with electron-dense nuclear structures. With respect to cadherin localization, the honeybee differs from Drosophila, the model for gametogenesis in insects, raising the question as to how differences among solitary and social species may be built into and generated from the general architecture of polytrophic meroistic ovaries. It also indicates the possibility of divergent roles for cadherin in the functional architecture of insect gonads, in general, especially in taxa with high reproductive output.
Resumo:
Thirty fine-needle biopsy (FNB) samples from 28 dogs subjected to surgical resection of cutaneous mast cell tumors (MCTs) were stained with Giemsa. At least 100 neoplastic cells from each cytology slide were evaluated by morphometric analysis. The parameters were: area, perimeter of the cell, cytoplasm, nucleus and circumference factor. MCTs of grade III had a mean cellular area of 231.70 μm2 ± 57.1, and grade II had a mean of 252.30 μm2 ± 55.0. Cellular perimeter was 61.20 ± 7.1 in grade II and 59.1 ± 8.6 in grade III. Cellular parameters were not statistically different between grades (p>.05). Mean nuclear area was 88.90 μm2 ± 19 in grade III and 72.30 μm2 ± 13.9 in grade II, with statistical difference between grades (P =.011). Mean nuclear perimeter was 32.40 ìm ± 3.0 in grade II and 35.70 ìm ± 4.0 in grade III, with statistical difference between grades (P =.018). Mean nuclear circumference factor was 1.0 ± 0.33 in grade II and 1.1 ± 0.28 in grade III, with no statistical difference between grades (P = 0.78). Nuclear-tocytoplasmic ratio in grade II was 0.29 ±.07 and 0.39 ±.08 in grade III, with statistical difference (P =.02). The number of binucleated and multinucleated cells and mitotic figures was significantly increased in grade III MCTs (P <.001). In conclusion, the number of mitotic figures, presence of binucleation and multinucleation, and nuclear-to-cytoplasmic ratio can help to guide a profile of MCT aggressiveness in cytologic preparations.
Resumo:
Both caspase-1- and caspase-3-like activities are required for Fas-mediated apoptosis. However, the role of caspase-1 and caspase-3 in mediating Fas-induced cell death is not clear. We assessed the contributions of these caspases to Fas signaling in hepatocyte cell death in vitro. Although wild-type, caspase-1−/−, and caspase-3−/− hepatocytes were killed at a similar rate when cocultured with FasL expressing NIH 3T3 cells, caspase-3−/− hepatocytes displayed drastically different morphological changes as well as significantly delayed DNA fragmentation. For both wild-type and caspase-1−/− apoptotic hepatocytes, typical apoptotic features such as cytoplasmic blebbing and nuclear fragmentation were seen within 6 hr, but neither event was observed for caspase-3−/− hepatocytes. We extended these studies to thymocytes and found that apoptotic caspase-3−/− thymocytes exhibited similar “abnormal” morphological changes and delayed DNA fragmentation observed in hepatocytes. Furthermore, the cleavage of various caspase substrates implicated in mediating apoptotic events, including gelsolin, fodrin, laminB, and DFF45/ICAD, was delayed or absent. The altered cleavage of these key substrates is likely responsible for the aberrant apoptosis observed in both hepatocytes and thymocytes deficient in caspase-3.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Cytoplasmic dynein is a multisubunit, microtubule-associated, mechanochemical enzyme that has been identified as a retrograde transporter of various membranous organelles. Dynactin, an additional multisubunit complex, is required for efficient dynein-mediated transport of vesicles in vitro. Recently, we showed that three genes defined by a group of phenotypically identical mutants of the filamentous fungus Neurospora crassa encode proteins that are apparent subunits of either cytoplasmic dynein or dynactin. These mutants, designated ropy (ro), display abnormal hyphal growth and are defective in nuclear distribution. We propose that mutations in other genes encoding dynein/dynactin subunits are likely to result in a ropy phenotype and have devised a genetic screen for the isolation of additional ro mutants. Cytoplasmic dynein/dynactin is the largest and most complex of the cytoplasmic motor proteins, and the genetic system described here is unique in its potentiality for identifying mutations in undefined genes encoding dynein/dynactin subunits or regulators. We used this screen to isolate > 1000 ro mutants, which were found to define 23 complementation groups. Unexpectedly, interallelic complementation was observed with some allele pairs of ro-1 and ro-3, which are predicted to encode the largest subunits of cytoplasmic dynein and dynactin, respectively. The results suggest that the Ro1 and Ro3 polypeptides may consist of multiple, functionally independent domains. In addition, approximately 10% of all newly isolated ro mutantsdisplay unlinked noncomplementation with two or more of the mutants that define the 23 complementation groups. The frequent appearance of ro mutants showing noncomplementation with multiple ro mutants having unlinked mutations suggests that nuclear distribution in filamentous fungi is a process that is easily disrupted by affecting either dosage or activity of cytoplasmic dynein, dynactin, and perhaps other cytoskeletal proteins or regulators.
Resumo:
The prostate-specific antigen-related serine protease gene, kallikrein 4 (KLK4), is expressed in the prostate and, more importantly, overexpressed in prostate cancer. Several KLK4 mRNA splice variants have been reported, but it is still not clear which of these is most relevant to prostate cancer. Here we report that, in addition to the full-length KLK4 (KLK4-254) transcript, the exon 1 deleted KLK4 transcripts, in particular, the 5'-truncated KLK4-205 transcript, is expressed in prostate cancer. Using V5/His6 and green fluorescent protein (GFP) carboxy terminal tagged expression constructs and immunocytochemical approaches, we found that hK4-254 is cytoplasmically localized, while the N-terminal truncated hK4-205 is in the nucleus of transfected PC-3 prostate cancer cells. At the protein level, using anti-hK4 peptide antibodies specific to different regions of hK4-254 (N-terminal and C-terminal), we also demonstrated that endogenous hK4-254 (detected with the N-terminal antibody) is more intensely stained in malignant cells than in benign prostate cells, and is secreted into seminal fluid. In contrast, for the endogenous nuclear-localized N-terminal truncated hK4-205 form, there was less difference in staining intensity between benign and cancer glands. Thus, KLK4-254/hK4-254 may have utility as an immunohistochemical marker for prostate cancer. Our studies also indicate that the expression levels of the truncated KLK4 transcripts, but not KLK4-254, are regulated by androgens in LNCaP cells. Thus, these data demonstrate that there are two major isoforms of hK4 (KLK4-254/hK4-254 and KLK4-205/hK4-205) expressed in prostate cancer with different regulatory and expression profiles that imply both secreted and novel nuclear roles.
Resumo:
Germline mutations of the PTEN tumor-suppressor gene, on 10q23, cause Cowden syndrome, an inherited hamartoma syndrome with a high risk of breast, thyroid and endometrial carcinomas and, some suggest, melanoma. To date, most studies which strongly implicate PTEN in the etiology of sporadic melanomas have depended on cell lines, short-term tumor cultures and noncultured metastatic melanomas. The only study which reports PTEN protein expression in melanoma focuses on cytoplasmic expression, mainly in metastatic samples. To determine how PTEN contributes to the etiology or the progression of primary cutaneous melanoma, we examined cytoplasmic and nuclear PTEN expression against clinical and pathologic features in a population-based sample of 150 individuals with incident primary cutaneous melanoma. Among 92 evaluable samples, 30 had no or decreased cytoplasmic PTEN protein expression and the remaining 62 had normal PTEN expression. In contrast, 84 tumors had no or decreased nuclear expression and 8 had normal nuclear PTEN expression. None of the clinical features studied, such as Clark's level and Breslow thickness or sun exposure, were associated with cytoplasmic PTEN expressional levels. An association with loss of nuclear PTEN expression was indicated for anatomical site (p = 0.06) and mitotic index (p = 0.02). There was also an association for melanomas to either not express nuclear PTEN or to express p53 alone, rather than both simultaneously (p = 0.02). In contrast with metastatic melanoma, where we have shown previously that almost two-thirds of tumors have some PTEN inactivation, only one-third of primary melanomas had PTEN silencing. This suggests that PTEN inactivation is a late event likely related to melanoma progression rather than initiation. Taken together with our previous observations in thyroid and islet cell tumors, our data suggest that nuclear-cytoplasmic partitioning of PTEN might also play a role in melanoma progression. (C) 2002 Wiley-Liss, Inc.
Resumo:
PPARbeta is expressed in the mouse epidermis during fetal development, and progressively disappears from the interfollicular epidermis after birth. Interestingly, its expression is strongly reactivated in the adult epidermis in conditions where keratinocyte proliferation is induced and during wound healing. Data obtained on PPARbeta heterozygous mice reveal that PPARbeta is implicated in the control of keratinocyte proliferation and is necessary for rapid healing of a skin wound.
Resumo:
Objective. To study the impact of the neutral endopeptidase (NEP)/neuropeptides (NPs) axis and nuclear factor kappa B (NFκB) as predictors of prostate-specific antigen (PSA) recurrence after radical prostatectomy (RP). Patients and Methods. 70 patients with early-stage PC were treated with RP and their tumor samples were evaluated for expression of NEP, endothelin-1 (ET-1) and NFκB (p65). Time to PSA recurrence was correlated with the examined parameters and combined with preoperative PSA level, Gleason score, pathological TNM (pT) stage, and surgical margin (SM) assessment. Results and Limitations. Membranous expression of NEP (P < 0.001), cytoplasmic ET-1 (P = 0.002), and cytoplasmic NFκB (P < 0.001) were correlated with time to PSA relapse. NEP was associated with ET-1 (P < 0.001) and NFκB (P < 0.001). ET-1 was also correlated with NFκB (P < 0.001). NEP expression (P = 0.017), pT stage (P = 0.013), and SMs (P = 0.036) were independent predictors of time to PSA recurrence. Conclusions. There seems to be a clinical model of NEP/NPs and NFκB pathways interconnection, with their constituents following inverse patterns of expression in accordance with their biological roles and molecular interrelations.
Resumo:
BACKGROUND: The nuclear receptors are a large family of eukaryotic transcription factors that constitute major pharmacological targets. They exert their combinatorial control through homotypic heterodimerisation. Elucidation of this dimerisation network is vital in order to understand the complex dynamics and potential cross-talk involved. RESULTS: Phylogeny, protein-protein interactions, protein-DNA interactions and gene expression data have been integrated to provide a comprehensive and up-to-date description of the topology and properties of the nuclear receptor interaction network in humans. We discriminate between DNA-binding and non-DNA-binding dimers, and provide a comprehensive interaction map, that identifies potential cross-talk between the various pathways of nuclear receptors. CONCLUSION: We infer that the topology of this network is hub-based, and much more connected than previously thought. The hub-based topology of the network and the wide tissue expression pattern of NRs create a highly competitive environment for the common heterodimerising partners. Furthermore, a significant number of negative feedback loops is present, with the hub protein SHP [NR0B2] playing a major role. We also compare the evolution, topology and properties of the nuclear receptor network with the hub-based dimerisation network of the bHLH transcription factors in order to identify both unique themes and ubiquitous properties in gene regulation. In terms of methodology, we conclude that such a comprehensive picture can only be assembled by semi-automated text-mining, manual curation and integration of data from various sources.
Resumo:
The peroxisome proliferator-activated receptors have enjoyed the spotlight for many reasons. These transcription factors are ligand-inducible nuclear receptors that modulate gene expression in response to a broad spectrum of compounds. The recognition that PPARs are indeed nuclear receptors for polyunsaturated fatty acids, some eicosanoids and also lipid-lowering and antidiabetic drugs, has opened many exciting avenues of research and drug discovery. Recent studies on the PPAR function have extended the role of these transcription factors beyond energy homeostasis to master gene in adipogenesis and also determinants in inflammation control. While rapid advances have been made, it is clear that we are far from a global understanding of the mechanisms and functions of PPARs.
Resumo:
Transcriptional activity relies on coregulators that modify the chromatin structure and serve as bridging factors between transcription factors and the basal transcription machinery. Using the DE domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) as bait in a yeast two-hybrid screen of a human adipose tissue library, we isolated the scaffold attachment factor B1 (SAFB1/HET/HAP), which was previously shown to be a corepressor of estrogen receptor alpha. We show here that SAFB1 has a very broad tissue expression profile in human and is also expressed all along mouse embryogenesis. SAFB1 interacts in pull-down assays not only with PPARgamma but also with all nuclear receptors tested so far, albeit with different affinities. The association of SAFB1 and PPARgamma in vivo is further demonstrated by fluorescence resonance energy transfer (FRET) experiments in living cells. We finally show that SAFB1 is a rather general corepressor for nuclear receptors. Its change in expression during the early phases of adipocyte and enterocyte differentiation suggests that SAFB1 potentially influences cell proliferation and differentiation decisions.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.