926 resultados para Cytochrome c nitrite reductase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Silveira et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After thermal treatment of a mixture of glucose and glycine for 2 h at 125 degreesC, about 60% of the starting material was converted into nonsoluble, black pigments, whereas 40% of the mixture was still water-soluble. Dialysis of the latter fraction revealed 30.4% of low molecular weight compounds (LMWs; MW <10 000 De) and 10.0% high-molecular weight products [HMWs; MW greater than or equal to 10000 Dal. The water-soluble Maillard reaction products (MRPs) were separated by gel permeation chromatography and ultrafiltration, revealing that 60% of the water-soluble products of the total carbohydrate/amino acid mixture had MWs <1 000 Da and consisted mainly of non-coloured reaction products. MRPs with MWs between 1000 and 30000 Da were Found in comparatively low yields (about 1.3%). In contrast, about 31.1% of the MRPs exhibited MWs > 30000 Da, amongst which 14.5% showed MWs > 100000 Da, thus indicating an oligomerisation of LMWs to melanoidins under roasting conditions. To investigate the physiological effects of these MRPs, xenobiotic enzyme activities were analysed in intestinal Caco-2 cells. For Phase-I NADPH-cytochrome c-reductase, the activity in the presence of the LMW and HMW fraction was decreased by 13% and 22%: respectively. Phase-II glutathione-S-transferase activity decreased by 15% and 18%, respectively, after incubation with the LMW and the HMW fractions. Considering the different yields, 30% and 10%, respectively, of the LMW and the HMW fractions, the total amount of the LMW fraction present in the glucose-glycine mixture is more active in modulating three enzyme activities than that of the HMW fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to the cytotoxic action of mitomycin C under oxygenated and hypoxic conditions. In contrast, porfiromycin was considerably less cytotoxic to wild-type parental cells than was mitomycin C in air and markedly more cytotoxic under hypoxia. Two FpT-transfected clones were selected that expressed 19- and 27-fold more FpT activity than the parental line. Levels of other oxidoreductases implicated in the activation of the mitomycins were unchanged. Significant increases in sensitivity to mitomycin C and porfiromycin in the two FpT-transfected clones were seen under both oxygenated and hypoxic conditions, with the increases in toxicity being greater under hypoxia than in air. These findings demonstrate that FpT can bioreductively activate the mitomycins in living cells and implicate FpT in the differential aerobic/hypoxic toxicity of the mitomycins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 enzyme catalysis requires two electrons transferred from NADPH-cytochrome P450 reductase (reductase) to P450. Electrostatic charge-pairing has been proposed to be one of the major forces in the interaction between P450 and reductase. In order to obtain further insight into the molecular basis for the protein interaction, I used two methods, chemical modification and specific anti-peptide antibodies, to study the involvement and importance of charged amino acid residues. Acetylation of lysine residues of P450c and P450b by acetic anhydride dramatically inhibited the reductase-supported P450c-dependent ethoxycoumarin hydroxylation activity, but P450 activity supported by cumene hydroperoxide is relatively unchanged. The modification of lysine residues of P450c and P450b did not grossly disturb the protein conformation as revealed by several spectral studies. This differential effect of lysine modification on the P450 activity in the system reconstituted with reductase versus the system supported by cumene hydroperoxide suggested an important role for P450 lysine residues in the interaction with reductase. Using $\rm\sp{14}C$-acetic anhydride, P450 lysine residues were labelled and further identified on P450c and P450b. Those lysine residues are at position 97, 271, 279, and 407 for P450c, and 251, 384, 422, 433, and 473 for P450b. Alignment of those identified lysine residues on P450c and P450b with amino acid residues identified in other studies indicated those residues reside in three major sequence areas. Modification of arginine residues of P450b by phenylglyoxal and 2, 3-butanedione have no significant effect on P450 activity either supported by NADPH and reductase or supported by cumene hydroperoxide. Further studies using $\rm\sp{14}C$-phenylglyoxal reveals that no incorporation of phenylglyoxal into P450b was found. These results demonstrated a predominant role of lysine residues of P450 in the electrostatic interaction with reductase. To understand the protein binding sites on each of P450 and reductase, I generated three anti-peptide antibodies against regions on reductase and five anti-peptide antibodies against five putative reductase binding sites on P450c. These anti-peptide antibodies were affinity purified and characterized on ELISA and by Western blot analysis. Inhibition experiments using these antibodies demonstrated that regions 109-120 and 204-220 of reductase are probably the two major binding sites for P450. The association of reductase with cytochromes P450 and cytochrome c may rely on different mechanisms. The data from experiments using anti-peptide (P450c) antibodies supports the important role of P450c lysine residues 271/279 and 458/460 in the interaction with reductase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homogenous detergent-solubilized NADPH-Cytochrome P-450 reductase was incorporated into microsomes and liposomes. This binding occurred spontaneously at temperatures between 4(DEGREES) and 37(DEGREES) and appeared to involve hydrophobic forces as the binding was not disrupted by 0.5 M sodium chloride. This exogenously-added reductase was active catalytically towards native cytochrome P-450, suggesting an association with the microsomal membrane similar to endogenous reductase. Homogeneous detergent-solubilized reductase was disaggregated by Renex-690 micelles, confirming the presence of a hydrophobic combining region on the enzyme. In contrast to these results, steapsin protease-solubilized reductase was incapable of microsomal attachment and did not interact with Renex-690 micelles. Detergent-solubilized reductase (76,500 daltons) was converted into a form with the electrophoretic mobility of steapsin protease-solubilized reductase (68,000 daltons) and a 12,500 dalton peptide (as determined by polyacrylamide-SDS gel electrophoresis) when the liposomal-incorporated enzyme was incubated with steapsin protease. The 68,000 dalton fragment thus obtained had properties identical with steapsin protease-solubilized reductase, i.e. it was catalytically active towards cytochrome c but inactive towards cytochrome P-450 and did not bind liposomes. The 12,500 dalton fragment remained associated with the liposomes when the digest was fractionated by gel filtration, suggesting that this is the segment of the enzyme which is embedded in the phospholipid bilayer. Thus, detergent-solubilized reductase appears to contain a soluble catalytic domain and a separate and separable membrane-binding domain. This latter domain is required for attaching the enzyme to the membrane and also to facilitate the catalytic interaction between the reductase and its native electron acceptor, cytochrome P-450. The membrane-binding segment of the reductase was isolated by preparative gel electrophoresis in SDS following its generation by proteolytic treatment of liposome-incorporated reductase. The peptide has a molecular weight of 6,400 as determined by gel filtration in 8 M guanidine hydrochloride and has an amino acid composition which is not especially hydrophobic. Following removal of SDS and dialysis out of 6 M urea, the membrane-binding peptide was unable to inhibit the activity of a reconstituted system containing purified reductase and cytochrome P-450. Moreover, when reductase and cytochrome P-450 were added to liposomes which contained the membrane-binding peptide, it was determined that mixed function oxidase activity was reconstituted as effectively as when vesicles without the membrane-binding peptide were used. Thus, the membrane-binding peptide was ineffective as an inhibitor of mixed function oxidase activity, suggesting perhaps that it facilitates catalysis by anchoring the catalytic domain of the reductase proximal to cytochrome P-450 (i.e. in the same mixed micelle) rather than through a specific interaction with cytochrome P-450. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NADPH cytochrome P-450 reductase releases FMN and FAD upon dilution into slightly acidic potassium bromide. The flavins are released with positive cooperativity. Dithiothreitol protects the FAD dependent cytochrome c reductase activity against inactivation by free radicals. Behavior in potassium bromide is sensitive to changes in the pH. High performance hydroxylapatite resolved the FAD dependent reductase from holoreductase. For 96% FAD dependent reductase, the overall yield was 12%.^ High FAD dependence was matched by a low FAD content, with FAD/FMN as low as 0.015. There were three molecules of FMN for every four molecules of reductase. The aporeductase had negligible activity towards cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, oxygen and acetyl pyridine adenine dinucleotide phosphate. A four minute incubation in FAD reconstituted one half to all of the specific activity, per milligram protein, of untreated reductase, depending upon the substrate. After a two hour reconstitution, the reductase eluted from hydroxylapatite at the location of holoreductase. It had little flavin dependence, was equimolar in FMN and FAD, and had nearly the specific activity (per mole flavin) of untreated reductase.^ The lack of activity and the ability of FMN to also reconstitute suggest that the redox center of FAD is essential for catalysis, rather than for structure. Dependence upon FAD is consistent with existing hypotheses for the catalytic cycle of the reductase. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On delivery of nitric oxide (NO) to protein samples (e.g., cytochrome c'), for spectroscopic experiments it is important to avoid exposure to oxygen and to remove contaminants from the NO gas. We describe a number of techniques for steady-state UV/Vis spectrophotometry and pre-steady-state stopped-flow spectrophotometry analysis of cytochrome c'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.