9 resultados para Cyprininae


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined the complete mitochondrial DNA sequences for two species of surface- and cave-dwelling-cyprinid fishes, Sinocyclocheilus grahami and S. altishoulderus. Sequence comparison of 13 protein-coding genes shows that the mutation pattern of each single gene is quite similar to those of other vertebrate animal species. Analysis of the ratios of Ka/Ks at these loci between Sinocyclocheilus and two other cyprinid species (Cyprinus carpio and Procypris rabaudi) show that Ka/Ks ratios are differed, consistent with purifying selection and variation in functional constraint among genes. Bayesian analysis and maximum likelihood analysis of the concatenated mitochondrial protein sequences for 14 cyprinid taxa support the monophyly of the family Cyprininae, and further confirm the monophyly of the genus Sinocyclocheilus. The two Sinocyclocheilus species fall within the Cyprinion-Onychostoma lineage, including Cyprinus, Carassius, and Procypris, rather than among the Barbinae, as previously suggested on morphological grounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mitochondrial 16S ribosomal RNA (rRNA) gene sequences from 93 cyprinid fishes were examined to reconstruct the phylogenetic relationships within the diverse and economically important subfamily Cyprininae. Within the subfamily a biased nucleotide composition (A > T, C > G) was observed in the loop regions of the gene, and in stem regions apparent selective pressures of base pairing showed a bias in favor of G over C and T over A. The bias may be associated with transition-transversion bias. Rates of nucleotide substitution were lower in stems than in loops. Analysis of compensatory substitutions across these taxa demonstrates 68% covariation in the gene and a logical weighting factor to account for dependence in mutations for phylogenetic inference should be 0.66. Comparisons of varied stem-loop weighting schemes indicate that the down-weightings for stem regions could improve the phylogenetic analysis and the degree of non-independence of stem substitutions was not as important as expected. Bayesian inference under four models of nucleotide substitution indicated that likelihood-based phylogenetic analyses were more effective in improving the phylogenetic performance than was weighted parsimony analysis. In Bayesian analyses, the resolution of phylogenies under the 16-state models for paired regions, incorporating GTR + G + I models for unpaired regions was better than those under other models. The subfamily Cyprininae was resolved as a monophyletic group, as well as tribe Labein and several genera. However, the monophyly of the currently recognized tribes, such as Schizothoracin, Barbin, Cyprinion + Onychostoma lineages, and some genera was rejected. Furthermore, comparisons of the parsimony and Bayesian analyses and results of variable length bootstrap analysis indicates that the mitochondrial 16S rRNA gene should contain important character variation to recover well-supported phylogeny of cyprinid taxa whose divergences occurred within the recent 8 MY, but could not provide resolution power for deep phylogenies spanning 10-19 MYA. (c) 2008 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Cyprinidae is the largest freshwater fish group in the world, including over 200 genera and 2100 species. The phylogenetic relationships of major clades within this family are simply poorly understood, largely because of the overwhelming diversity of the group; however, several investigators have advanced different hypotheses of relationships that pre- and post-date the use of shared-derived characters as advocated through phylogenetic systematics. As expected, most previous investigations used morphological characters. Recently, mitochondrial DNA (mtDNA) sequences and combined morphological and mtDNA investigations have been used to explore and advance our understanding of species relationships and test monophyletic groupings. Limitations of these studies include limited taxon sampling and a strict reliance upon maternally inherited mtDNA variation. The present study is the first endeavor to recover the phylogenetic relationships of the 12 previously recognized monophyletic subfamilies within the Cyprinidae using newly sequenced nuclear DNA (nDNA) for over 50 species representing members of the different previously hypothesized subfamily and family groupings within the Cyprinidae and from other cypriniform families as outgroup taxa. Hypothesized phylogenetic relationships are constructed using maximum parsimony and Basyesian analyses of 1042 sites, of which 971 sites were variable and 790 were phylogenetically informative. Using other appropriate cypriniform taxa of the families Catostomidae (Myxocyprinus asiaticus), Gyrinocheilidae (Gyrinocheilus aymonieri), and Balitoridae (Nemacheilus sp. and Beaufortia kweichotvensis) as outgroups, the Cyprinidae is resolved as a monophyletic group. Within the family the genera Raiamas, Barilius, Danio, and Rasbora, representing many of the tropical cyprinids, represent basal members of the family. All other species can be classified into variably supported and resolved monophyletic lineages, depending upon analysis, that are consistent with or correspond to Barbini and Leuciscini. The Barbini includes taxa traditionally aligned with the subfamily Cyprininae sensu previous morphological revisionary studies by Howes (Barbinae, Labeoninae, Cyprininae and Schizothoracinae). The Leuciscini includes six other subfamilies that are mainly divided into three separate lineages. The relationships among genera and subfamilies are discussed as well as the possible origins of major lineages. (c) 2008 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Cyprinidae is widely distributed in East Asia, and has the important phylogenetic significance in the fish evolution. In this study, the 5' end partial sequences (containing exon 1, exon 2 and indel 1) of S6K1 gene were obtained from 30 representative species in Cyprinidae and outgroup using PCR amplification and sequencing. The phylogenetic relationships of Cyprinidae were reconstructed with neighbor joining (NJ), maximum parsimony (MP), maximum likelihood (ML), and Bayesian methods. Myxocyprinus asiaticus (Catostomidae) was assigned to the outgroup taxon. Similar phylogenetic relationships within the family Cyprinidae were achieved with the four analyses. Leuciscini and Barbini were monophyletic lineages respectively with the high nodal supports. Leuciscini comprises Hypophthalmichthyinae, Xenocyprinae, Cultrinae, Gobioninae, Acheilognathinae and East Asian species of Leuciscinae and Danioninae. Monophyly of East Asian clade was supported with high nodal support. Barbini comprises Schizothoracinae, Barbinae, Cyprininae and Labeoninae. The monophyletic lineage consisting of Danio rerio, D. myersi, and Rasbora trilineata was basal in the tree. In addition, the large fragment indels in intron 1 were analyzed to improve the understanding of Cyprinidae relationships. The results showed that the large fragment indels were correlated with the relations among species. Some conserved regions in intron 1 were thought to be involved in the functional regulation. However, no correlation was found between sequence variations and species characteristic size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Cyprinidae is one of the largest fish families in the world, which is widely distributed in East Asian, with obvious difference in characteristic size among species. The phylogenetic analysis of cyprinid taxa based on the functionally important genes can help to understand the speciation and functional divergench of the Cyprinidae. The c-myc gene is an important gene regulating individual growth. In the present study, the sequence variations of the cyprinid c-myc gene and their phylogenetic significance were analyzed. The 41 complete sequences of the c-myc gene were obtained from cyprinids and outgroups through PCR amplification and clone. The coding DNA sequences of the c-myc gene were used to infer molecular phylogenetic relationships within the Cyprinidae. Myxocyprinus asiaticus (Catostomidae), Misgurnus anguillicaudatus (Cobitidae) and Hemimyzon sinensis (Homalopteridae) were assigned to the outgroup taxa. Phylogenetic analyses using maximum parsimony (MP), maximum likelihood (ML), and Bayesian retrieved similar topology. Within the Cyprinidae, Leuciscini and Barbini formed the monophyletic lineage respectively with high nodal supports. Leuciscini comprises Xeno-cyprinae, Cultrinae, East Asian species of Leuciscinae and Danioninae, Gobioninae and Acheilognathinae, and Barbini contains Schizothoracinae, Barbinae, Cyprininae and Labeoninae. Danio rerio, D. myersi and Rasbora trilineata were supposed to separate from Leuciscinae and Barbini and to form another lineage, The positions of some Danioninae species were still unresolved. Analyses of both amino acid variation with parsimony information and two high variation regions indicated that there is no correlation between variations of single amino acid or high variation regions and characteristic size of cyprinids. In,addition, the species with smaller size were usually found to be basal within clades in the tree, which might be the results of the adaptation to the primitive ecology and survival pressure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The family Cyprinidae is one of the largest families of fishes in the world and a well-known component of the East Asian freshwater fish fauna. However, the phylogenetic relationships among cyprinids are still poorly understood despite much effort paid on the cyprinid molecular phylogenetics. Original nucleotide sequence data of the nuclear recombination activating gene 2 were collected from 109 cyprinid species and four non-cyprinid cypriniform outgroup taxa and used to infer the cyprinid phylogenetic relationships and to estimate node divergence times. Phylogenetic reconstructions using maximum parsimony, maximum likelihood, and Bayesian analysis retrieved the same clades, only branching order within these clades varied slightly between trees. Although the morphological diversity is remarkable, the endemic cyprinid taxa in East Asia emerged as a monophyletic clade referred to as Xenocypridini. The monophyly for the subfamilies including Cyprininae and Leuciscinae, as well as the tribes including Labeonini, Gobionini, Acheilognathini, and Leuciscini, was also well resolved with high nodal support. Analysis of the RAG2 gene supported the following cyprinid molecular phylogeny: the Danioninae is the most basal subfamily within the family Cyprinidae and the Cyprininae is the sister group of the Leuciscinae. The divergence times were estimated for the nodes corresponding to the principal clades within the Cyprinidae. The family Cyprinidae appears to have originated in the mid-Eocene in Asia, with the cladogenic event of the key basal group Danioninae occurring in the early Oligocene (about 31-30 MYA), and the origins of the two subfamilies, Cyprininae and Leuciscinae, occurring in the mid-Oligocene (around 26 MYA). (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complete mitochondrial cytochrome b sequences of 54 species, including 18 newly sequenced, were analyzed to infer the phylogenetic relationships within the family Cyprinidae in East Asia. Phylogenetic trees were generated using various tree-building methods, including Neighbor-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) methods, with Myxocyprinus asiaticus (family Catostomidae) as the designated outgroup. The results from NJ and ML methods were mostly similar, supporting some existing subfamilies within Cyprinidae as monophyletic, such as Cultrinae, Xenocyprinae and Gobioninae (including Gobiobotinae). However, genera within the subfamily "Danioninae" did not form a monophyletic group. The subfamily Leuciscinae was divided into two unrelated groups: the "Leuciscinae" in East Asia forming as a monophyletic group together with Cultrinae and Xenocyprinae, while the Leuciscinae in Europe, Siberia, and North America as another monophyletic group. The monophyly of subfamily Cyprininae sensu Howes was supported by NJ and ML trees and is basal in the tree. The position of Acheilognathinae, a widely accepted monophyletic group represented by Rhodeus sericeus, was not resolved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der vorliegenden Arbeit untersuchte ich die Diversität und die sauerstoffabhängige Expression der Globine von Karpfenfischen. Mit Globin X konnte ein fünfter Globintyp identifiziert werden, dessen Vorkommen auf Fische und Amphibien beschränkt ist. Globin X wird sowohl auf mRNA- als auch auf Proteinebene in zahlreichen Geweben exprimiert. Zur Aufklärung der genauen Funktion müssen noch weitere Analysen durchgeführt werden. Phylogenetische Untersuchungen ergaben eine ursprüngliche Verwandtschaft zwischen Neuroglobin und Globin X und deuten darauf hin, dass der letzte gemeinsame Vorfahre der Protostomia und Deuterostomia bereits zwei verschiedene Globintypen besessen hat. Im Zebrabärbling und im Goldfisch konnte ich eine Myoglobin-Expression neben dem Herzen auch in Hirn, Kieme, Leber und Niere nachweisen und somit zeigen, dass Myoglobin nicht nur im Muskelgewebe lokalisiert ist. Des Weiteren konnte eine hirnspezifische Myoglobin-Isoform im Goldfisch identifiziert werden, deren Funktion noch unklar ist und weiterer Untersuchungen bedarf. Das Vorhandensein der zweiten Isoform ist innerhalb der Cyprinidae (Karpfenfische) aufgrund einer Genomduplikation bei den Cyprininae (Kärpflinge) auf diese Unterfamilie beschränkt. Durch Hypoxieexperimente konnte gezeigt werden, dass die Expression der Globine von der Intensität des Sauerstoffmangels abhängig ist und gewebe- und artspezifisch erfolgt. Im Zebrabärbling wurde eine Abnahme der Hämoglobin- und Globin X-Konzentration beobachtet, während das Cytoglobin-Expressionsniveau nahezu unverändert blieb. Im Fall von Myoglobin und Neuroglobin konnte zum ersten Mal gezeigt werden, dass die hypoxieinduzierte Zunahme der mRNA-Menge auch mit einer verstärkten Expression des jeweiligen Proteins korreliert ist. Im Vergleich dazu war die Veränderung der Expression der meisten Globine im Goldfisch gering, lediglich Myoglobin wurde im Fischkörper auf mRNA-Ebene nach Hypoxie deutlich verstärkt exprimiert. Durch einen Vergleich der konstitutiven Neuroglobin-Expression beider Karpfenfische konnte in Auge und Hirn des hypoxietoleranten Goldfisches eine 3- bzw. 5-fach höhere Neuroglobin-Konzentration als im hypoxiesensitiven Zebrabärbling nachgewiesen werden. Meine Ergebnisse stützen somit die Hypothese, dass Neuroglobin eine myoglobinähnliche Funktion einnimmt und den aeroben Stoffwechsel im neuronalen Gewebe auch unter Sauerstoffmangel aufrechterhält.