2 resultados para Cyp4b1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modifications at the N-terminus of the rabbit CYP4B1 gene resulted in expression levels in Escherichia coli of up to 660 nmol/L. Solubilization of the enzyme from bacterial membranes led to substantial conversion to cytochrome P420 unless alpha-naphthoflavone was added as a stabilizing ligand. Mass spectrometry analysis and Edman sequencing of purified enzyme preparations revealed differential N-terminal post-translational processing of the various constructs expressed. Notably, bacterial expression of CYP4B1 produced a holoenzyme with >98.5% of its heme prosthetic group covalently linked to the protein backbone. The near fully covalently linked hernoproteins exhibited similar rates and regioselectivities of lauric acid hydroxylation to that observed previously for the partially heme processed enzyme expressed in insect cells. These studies shed new light on the consequences of covalent heme processing in CYP4B1 and provide a facile system for future mechanistic and structural studies with the enzyme. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In both animal models and humans, the first and obligatory step in the activation of arylamines is N-hydroxylation. This pathway is primarily mediated by the phase-I enzymes CYP1A1, CYP1A2 and CYP4B1. In the presence of flavonoids such as alpha-naphthoflavone and flavone, both CYP3A4 and CYP3A5 have also been shown to play a minor role in the activation of food-derived heterocyclic amines. The further activation of N-hydroxyarylamines by phase-II metabolism can involve both N,O-acetylation and N,O-sulfonation catalyzed by N-acetyltransferases (NAT1 and NAT2) and sulfotransferases, respectively. Using an array of techniques, we have been unable to detect constitutive CYP1A expression in any segments of the human gastrointestinal tract. This is in contrast to the rabbit where CYP1A1 protein was readily detectable on immunoblots in microsomes prepared from the small intestine. In humans, CYP3A3/3A4 expression was detectable in the esophagus and all segments of the small intestine. Northern blot analysis of eleven human colons showed considerable heterogeneity in CYP3A mRNA between individuals, with the presence of two mRNA species in same subjects. Employing the technique of hybridization histochemistry (also known as in situ hybridization), CYP4B1 expression was observed in some human colons but not in the liver or the small intestine. Hybridization histochemistry studies have also demonstrated variable NAT1 and NAT2 expression in the human gastrointestinal tract. NAT1 and NAT2 mRNA expression was detected in the human liver, small intestine, colon, esophagus, bladder, ureter, stomach and lung. Using a general aryl sulfotransferase riboprobe (HAST1), we have demonstrated marked sulfotransferase expression in the human colon, small intestine, lung, stomach and liver. These studies demonstrate that considerable variability exists in the expression of enzymes involved in the activation of aromatic amines in human tissues. The significance of these results in relation to a role for heterocyclic amines in colon cancer is discussed.