981 resultados para Cyclooxygenase 2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exogenous prostacyclin is effective in reducing pulmonary vascular resistance in some forms of human pulmonary hypertension (PH). To explore whether endogenous prostaglandins played a similar role in pulmonary hypertension, we examined the effect of deleting cyclooxygenase (COX)-gene isoforms in a chronic hypoxia model of PH. Pulmonary hypertension, examined by direct measurement of right ventricular end systolic pressure (RVESP), right ventricular hypertrophy (n = 8), and hematocrit (n = 3), was induced by 3 weeks of hypobarichypoxia in wild-type and COX-knockout (KO) mice. RVESP was increased in wild-type hypoxic mice compared with normoxic controls (24.4 ± 1.4 versus 13.8 ± 1.9 mm Hg; n = 8; p < 0.05). COX-2 KO mice showed a greater increase in RVESP following hypoxia (36.8 ± 2.7 mm Hg; p < 0.05). Urinary thromboxane (TX)B2 excretion increased following hypoxia (44.6 ± 11.1 versus 14.7 ± 1.8 ng/ml; n = 6; p < 0.05), an effect that was exacerbated by COX-2 gene disruption (54.5 ± 10.8 ng/ml; n = 6). In contrast, the increase in 6-keto-prostacyclin1α excretion following hypoxia was reduced by COX-2 gene disruption (29 ± 3 versus 52 ± 4.6 ng/ml; p < 0.01). Tail cut bleed times were lower following hypoxia, and there was evidence of intravascular thrombosis in lung vessels that was exacerbated by disruption of COX-2 and reduced by deletion of COX-1. The TXA2/endoperoxide receptor antagonist ifetroban (50 mg/kg/day) offset the effect of deleting the COX-2 gene, attenuating the hypoxia-induced rise in RVESP and intravascular thrombosis. COX-2 gene deletion exacerbates pulmonary hypertension, enhances sensitivity to TXA2, and induces intravascular thrombosis in response to hypoxia. The data provide evidence that endogenous prostaglandins modulate the pulmonary response to hypoxia. Copyright © 2008 by The American Society for Pharmacology and Experimental Therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both cyclooxygenase (COX)-2 and epidermal growth factor receptor (EGFR) are thought to play important roles in the pathogenesis of non-small cell lung cancer (NSCLC). A number of in vitro studies have postulated a link between EGFR activation and subsequent COX-2 upregulation. The relationship between these factors has not been established in patients with NSCLC. COX-2 and EGFR expression were studied in 172 NSCLC specimens using standard immunohistochemical techniques. Western blotting was used to determine COX-2 and EGFR levels in five NSCLC cell lines. The effect of treatment with EGF on COX-2 expression in A549 cells was assessed. Results: Both EGFR and COX-2 are overexpressed in NSCLC. The predominant pattern of COX-2 and EGFR staining was cytoplasmic. Membranous EGFR staining was seen in 23.3% of cases. There was no relationship between COX-2 and EGFR expression and survival or any clinicopathological features. No correlation was seen between EGFR expression and COX-2 expression in the immunohistochemical series or in the cell lines. Treatment with EGF did not upregulate COX-2 levels in A549 cells, either in serum free or serum-supplemented conditions. Conclusions: Although COX-2 and EGFR are over-expressed in NSCLC neither was of prognostic significance in this series of cases. There is no correlation between these two factors in either tumour samples or cell lines. Although these factors show no correlation in NSCLC, they remain potential, though independent targets for treatment. © 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is part of a family of plasma membrane receptor tyrosine kinases that control many important cellular functions, from growth and proliferation to cell death. Cyclooxygenase (COX)-2 is an enzyme which catalyses the conversion of arachidonic acid to prostagladins and thromboxane. It is induced by various inflammatory stimuli, including the pro-inflammatory cytokines, Interleukin (IL)-1β, Tumour Necrosis Factor (TNF)-α and IL-2. Both EGFR and COX-2 are over-expressed in non-small cell lung cancer (NSCLC) and have been implicated in the early stages of tumourigenesis. This paper considers their roles in the development and progression of lung cancer, their potential interactions, and reviews the recent progress in cancer therapies that are directed toward these targets. An increasing body of evidence suggests that selective inhibitors of both EGFR and COX-2 are potential therapeutic agents for the treatment of NSCLC, in the adjuvant, metastatic and chemopreventative settings. © 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims: Low stage and curative surgery are established factors for improved survival in gastric cancer. However, not all low-stage patients have a good prognosis. Cyclooxygenase-2 (COX-2) is known to associate with reduced survival in several cancers, and has been shown to play an important role in gastric carcinogenesis. Since new and better prognostic markers are needed for gastric cancer, we studied the prognostic significance of COX-2 and of markers that associate with COX-2 expression. We also studied markers reflecting proliferation and apoptosis, and evaluated their association with COX-2. Our purpose was to construct an accurate prognostic model by combining tissue markers and clinicopathogical factors. Materials and methods: Of 342 consecutive patients who underwent surgery for gastric cancer at Meilahti Hospital, Helsinki University Central Hospital, 337 were included in this study. Low stages I to II were represented by 141 (42%) patients, and high stages III to IV by 196 (58%). Curative surgery was performed on 176 (52%) patients. Survival data were obtained from the national registers. Slides from archive tissue blocks were prepared for immunohistochemistry by use of COX-2, human antigen R (HuR), cyclin A, matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), and Ki-67 antibodies. Immunostainings were scored by microscopy, and scores were entered into a database. Associations of tumor markers with clinicopathological factors were calculated, as well as associations with p53, p21, and results of flow cytometry from earlier studies. Survival analysis was performed by the Kaplan-Meier method, and Cox multivariate models were reconstructed. Cell culture experiments were performed to explore the effect of small interfering (si)RNA of HuR on COX-2 expression in a TMK-1 gastric cancer cell line. Results: Overall 5-year survival was 35.1%. Study I showed that COX-2 was an independent prognostic factor, and that the prognostic impact of COX-2 was more pronounced in low-stage patients. Cytoplasmic HuR expression also associated with reduced survival in gastric cancer patients in a non-independent manner. Cell culture experiments showed that HuR can regulate COX-2 expression in TMK-1 cells in vitro, with an association also between COX-2 and HuR tissue expression in a clinical material. In Study II, cyclin A was an independent prognostic factor and was associated with HuR expression in the gastric cancer material. The results of Study III showed that epithelial MMP-2 associated with survival in univariate, but not in multivariate analysis. However, MMP-9 showed no prognostic value. MMP-2 expression was associated with COX-2 expression. In Study IV, the prognostic power of COX-2 was compared with that of all tested markers associated with survival in Studies I to III, as well as with p21, p53, and flow cytometry results. COX-2 and p53 were independent prognostic factors, and COX-2 expression was associated with that of p53 and Ki-67 and also with aneuploidy. Conclusions: COX-2 is an independent prognostic factor in gastric cancer, and its prognostic power emerges especially in low stage cancer. COX-2 is regulated by HuR, and is associated with factors reflecting invasion, proliferation, and apoptosis. In an extended multivariate model, COX-2 retained its position as an independent prognosticator. COX-2 can be considered a promising new prognostic marker in gastric cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report data from two related assay systems (isolated enzyme assays and whole blood assays) that C-phycocyanin a biliprotein from Spirulina platensis is a selective inhibitor of cyclooxygenase-a (COX-2) with a very low IC50 COX-2/IC50 COX-1 ratio (0.04). The extent of inhibition depends on the period of preincubation of phycocyanin with COX-2, but without any effect on the period of preincubation with COX-1. The IC50 value obtained for the inhibition of COX-2 by phycocyanin is much lower (180 nM) as compared to those of celecoxib (255 nM) and rofecoxib (401 nM), the well-known selective COX-2 inhibitors. In the human whole blood assay, phycocyanin very efficiently inhibited COX-2 with an IC50 value of 80 nM. Reduced phycocyanin and phycocyanobilin, the chromophore of phycocyanin are poor inhibitors of COX-2 without COX-2 selectivity. This suggests that apoprotein in phycocyanin plays a key role in the selective inhibition of COX-2. The present study points out that the hepatoprotective, anti-inflammatory, and anti-arthritic properties of phycocyanin reported in the literature may be due, in part, to its selective COX-2 inhibitory property, although its ability to efficiently scavenge free radicals and effectively inhibit lipid peroxidation may also be involved. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in silico approach was adopted to identify potential cyclooxygenase-2 inhibitors through molecular docking studies. The in vivo studies indicated that synthetic palmitoyl derivatives of salicylic acid, para amino phenol, para amino benzoic acid, and anthranilic acid possessed significant pharmacological activities like anti-inflammatory, analgesic, and antipyretic activities. None of the tested substances produced any significant gastric lesions in experimental animals. In an attempt to understand the ligandprotein interactions in terms of the binding affinity, the above synthetic molecules were subjected to docking analysis using AutoDock. The palmitoyl derivatives palmitoyl anthranilic acid, palmitoyl para amino benzoic acid, palmitoyl para amino phenol, and palmitoyl salicylic acid showed better binding energy than the known inhibitor diclofenac bound to 1PXX. All the palmitoyl derivatives made similar interactions with the binding site residues of cyclooxygenase-2 as compared to that of the known inhibitor. Thus, structure-based drug discovery approach was successfully employed to identify some promising pro-drugs for the treatment of pain and inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blastocyst hatching is critical for successful implantation leading to pregnancy. Its failure causes infertility. The phenomenon of blastocyst hatching in humans is poorly understood and the available information on this stems from studies of rodents such as mice and hamsters. We and others showed that hamster blastocyst hatching is characterized by firstly blastocyst deflation followed by a dissolution of the zona pellucida (zona) and accompanied by trophectodermal projections (TEPs). We also showed that embryo-derived cathepsins (Cat) proteases, specifically Cat-L, -B and -P act as zonalysins and are responsible for hatching. In this study, we show the expression and function of one of the potential regulators of embryogenesis, cyclooxygenase (COX)-2 during blastocyst development and hatching. The expression of COX-2 mRNA and protein was observed in 8-cell through hatched blastocyst stages and it was also localized to blastocysts TEPs. Specific COX-2 inhibitors, NS-398 and CAY-10404, inhibited blastocyst hatching; percentages achieved were only 28.4 5.3 and 32.3 5.4, respectively, compared with 90 with untreated embryos. Interestingly, inhibitor-treated blastocysts failed to deflate, normally observed during hatching. Supplementation of prostaglandins (PGs)-E-2 or -I-2 to cultured embryos reversed the inhibitors effect on hatching and also the deflation behavior. Importantly, the levels of mRNA and protein of Cat-L, -B and -P showed a significant reduction in the inhibitor-treated embryos compared with untreated embryos, although its mechanism remains to be examined. These data provide the first evidence that COX-2 is critical for blastocyst hatching in the golden hamster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune responses during fungal infections are predominately mediated by 5/15-lipoxygenases (LO)-or cyclooxygenase (COX)-2-catalysed bioactive eicosanoid metabolites like leukotrienes, lipoxins and prostaglandins. Although few host mediators of fungi-triggered eicosanoid production have been established, the molecular mechanism of expression and regulation of 5-LO, 15-LO and COX-2 are not well-defined. Here, we demonstrate that, macrophages infected with representative fungi Candida albicans, Aspergillus flavus or Aspergillus fumigatus or those treated with Curdlan, a selective agonist of pattern recognition receptor for fungi Dectin-1, displays increased expression of 5-LO, 15-LO and COX-2. Interestingly, Dectin-1-responsive Syk pathway activates mTOR-sonic hedgehog (SHH) signaling cascade to stimulate the expression of these lipid metabolizing enzymes. Loss-of-function analysis of the identified intermediaries indicates that while Syk-mTOR-SHH pathway-induced 5-LO and 15-LO suppressed the Dectin-l-responsive pro-inflammatory signature cytokines like TNE-alpha, IL-1 beta and IL-12, Syk-mTOR-SHH-induced COX-2 positively regulated these cytokines. Dectin-1-stimulated IL-6, however, is dependent on 5-LO, 15-LO and COX-2 activity. Together, the current study establishes Dectin-1-arbitrated host mediators that direct the differential regulation of immune responses during fungal infections and thus are potential candidates of therapeutic intervention. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Human melanoma frequently colonizes bone marrow (BM) since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC) microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2) in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods: Herein we analyzed the effect of cyclooxygenase-2 (COX-2) inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M) cells into healthy and bacterial endotoxin lipopolysaccharide (LPS)-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M) cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results: Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM) increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNF alpha and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a complete abrogation of both adhesion-and proliferation-stimulating effect of BMSC on melanoma cells. Conversely, recombinant VEGF increased adherence to BMSC and proliferation of both B16M and A375M cells, compared to basal medium-treated cells, while addition of celecoxib neutralized VEGF effects on melanoma. Recombinant TNFa induced B16M production of VEGF via COX-2-dependent mechanism. Moreover, exogenous PGE2 also increased B16M cell adhesion to immobilized recombinant VCAM-1. Conclusions: We demonstrate the contribution of VEGF-induced tumor COX-2 to the regulation of adhesion-and proliferation-stimulating effects of TNFa, from endotoxin-activated bone marrow stromal cells, on VLA-4-expressing