966 resultados para Cyclo-oxygenase-2 Inhibitors
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.
Resumo:
Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
El objetivo fue evaluar la intervención de las alertas en la prescripción de diclofenaco. Estudio observacional, comparativo, post intervención, de un antes después, en pacientes con prescripción de diclofenaco. Se evaluó la intervención de las alertas restrictivas antes y después de su implementación en los pacientes prescritos con diclofenaco y que tenían asociado un diagnóstico de riesgo cardiovascular según CIE 10 o eran mayores de 65 años. Un total de 315.135 transacciones con prescripción de diclofenaco, en 49.355 pacientes promedio mes. El 94,8% (298.674) de las transacciones fueron prescritas por médicos generales.
Risk of serious NSAID-related gastrointestinal events during long-term exposure: a systematic review
Resumo:
Objective: Exposure to non-steroidal anti-inflammatory drugs (NSAIDs) is associated wit increased risk of serious gastrointestinal (GI) events compared with non-exposure. We investigated whether that risk is sustained over time. Data sources: Cochrane Controlled Trials Register (to 2002); MEDLINE, EMBASE, Derwent Drug File and Current Contents (1999-2002); manual searching of reviews (1999-2002). Study selection: From 479 search results reviewed and 221 articles retrieved, seven studies of patients exposed to prescription non-selective NSAIDs for more than 6 months and reporting time-dependent serious GI event rates were selected for quantitative data synthesis. These were stratified into two groups by study design. Data extraction: Incidence of GI events and number of patients at specific time points were extracted. Data synthesis: Meta-regression analyses were performed. Change in risk was evaluated by testing whether the slope of the regression line declined over time. Four randomised controlled trials (RCTs) provided evaluable data from five NSAID arms (aspirin, naproxen, two ibuprofen arms, and diclofenac). When the RCT data were combined, a small significant decline in annualised risk was seen: -0.005% (95% Cl, -0.008% to -0.001%) per month. Sensitivity analyses were conducted because there was disparity within the RCT data. The pooled estimate from three cohort studies showed no significant decline in annualised risk over periods up to 2 years: -0.003% (95% Cl, -0.008% to 0.003%) per month. Conclusions: Small decreases in risk over time were observed; these were of negligible clinical importance. For patients who need long-term (> 6 months) treatment, precautionary measures should be considered to reduce the net probability of serious GI events over the anticipated treatment duration. The effect of intermittent versus regular daily therapy on long-term risk needs further investigation.
Resumo:
Affiliation: Faculté de pharmacie, Université de Montréal
Resumo:
The present study investigated the role of ROS (reactive oxygen species) and COX (cyclooxygenase) in ethanol-induced contraction and elevation of [Ca(2+)](i) (intracellular [Ca(2+)]). Vascular reactivity experiments, using standard muscle bath procedures, showed that ethanol (1-800 mmol/l) induced contraction in endothelium-intact (EC(50): 306 +/- 34 mmol/l) and endothelium-denuded (EC(50): 180 +/- 40 mmol/l) rat aortic rings. Endothelial removal enhanced ethanol-induced contraction. Preincubation of intact rings with L-NAME [N(G)-nitro-L-arginine methyl ester; non-selective NOS (NO synthase) inhibitor, 100 mu mol/l], 7-nitroindazole [selective nNOS (neuronal NOS) inhibitor, 100 mu mol/l], oxyhaemoglobin (NO scavenger, 10 mu mol/l) and ODQ (selective inhibitor of guanylate cyclase enzyme, 1 mu mol/l) increased ethanol-induced contraction. Tiron [O(2)(-) (superoxide anion) scavenger, 1 mmol/l] and catalase (H(2)O(2) scavenger, 300 units/ml) reduced ethanol-induced contraction to a similar extent in both endothelium-intact and denuded rings. Similarly, indomethacin (non-selective COX inhibitor, 10 mu mol/l), SC560 (selective COX- I inhibitor, 1 mu mol/l), AH6809 [PGF(2 alpha) (prostaglandin F(2 alpha))] receptor antagonist, 10 mu mol/l] or SQ29584 [PGH(2)(prostaglandin H(2))/TXA(2) (thromboxane A(2)) receptor antagonist, 3 mu mol/l] inhibited ethanol-induced contraction in aortic rings with and without intact endothelium. In cultured aortic VSMCs (vascular smooth muscle cells), ethanol stimulated generation of O(2)(-) and H(2)O(2). Ethanol induced a transient increase in [Ca(2+)](i), which was significantly inhibited in VSMCs pre-exposed to tiron or indomethacin. Our data suggest that ethanol induces vasoconstriction via redox-sensitive and COX-dependent pathways, probably through direct effects on ROS production and Ca(2+) signalling. These findings identify putative molecular mechanisms whereby ethanol, at high concentrations, influences vascular reactivity. Whether similar phenomena occur in vivo at lower concentrations of ethanol remains unclear.
Resumo:
L’arthrose ou ostéoarthrose (OA) est l’affection rhumatologique la plus fréquente au monde. Elle est caractérisée principalement par une perte du cartilage articulaire et l’inflammation de la membrane synoviale. L’interleukine (IL)-1ß, une cytokine pro-inflammatoire, joue un rôle très important dans la pathogenèse de l’OA. Elle exerce son action en induisant l’expression des enzymes cyclo-oxygénase 2 (COX-2), prostaglandine E synthétase microsomale 1 (mPGES-1) et l’oxyde nitrique synthétase inductible (iNOS) ainsi que la production de la prostaglandine E2 (PGE2) et de l’oxyde nitrique (NO). Ces derniers (PGE2 et NO) contribuent à la synovite et la destruction du cartilage articulaire par leurs effets pro-inflammatoires, pro-cataboliques, anti-anaboliques, pro-angiogéniques et pro-apoptotiques. Les modifications épigénétiques, telles que la méthylation de l’ADN, et l’acétylation et la méthylation des histones, jouent un rôle crucial dans la régulation de l’expression des gènes. Parmi ces modifications, l’acétylation des histones est la plus documentée. Ce processus est contrôlé par deux types d’enzymes : les histones acétyltransférases (HAT) qui favorisent la transcription et les histones déacétylases (HDAC) qui l’inhibent. L’objectif de ce travail est d’examiner le rôle des enzymes HDAC dans la régulation de l’expression de la COX-2, mPGES-1 et iNOS. Nous avons montré qu’au niveau des chondrocytes, les inhibiteurs des HDAC (iHDAC), trichostatine A (TSA) et butyrate de sodium (NaBu), suppriment l’expression de la COX-2 et iNOS au niveau de l’ARNm et protéique, ainsi que la production de la PGE2 et du NO, induites par l’IL-1ß. L’effet inhibiteur à lieu sans affecter l’activité de liaison à l’ADN du facteur de transcription NF-κB (nuclear factor κ B). La TSA et le NaBu inhibent également la dégradation induite par l’IL-1ß des protéoglycanes au niveau du cartilage. Nous avons également montré, qu’au niveau des fibroblastes synoviaux, les iHDAC, TSA, NaBu et acide valproïque (VA), suppriment l’expression de la mPGES-1 ainsi que la production de la PGE2 induites par l’IL-1ß. En utilisant diverses approches expérimentales, nous avons montré que HDAC4 est impliquée dans l’induction de l’expression de la mPGES-1 par l’IL-1ß. HDAC4 exerce son action, via son activité déacétylase, en augmentant l’activité transcriptionnelle de Egr-1 (early growth factor 1), facteur de transcription principal de l’expression de la mPGES-1. L’ensemble de ces résultats suggère que les inhibiteurs des HDAC pourraient être utilisés dans le traitement de l’OA.
Resumo:
Neuronal nitric oxide synthase (nNOS) generates NO in neurons, and heme-oxygenase-2 (HO-2) synthesizes carbon monoxide (CO). We have evaluated the roles of NO and CO in intestinal neurotransmission using mice with targeted deletions of nNOS or HO-2. Immunohistochemical analysis demonstrated colocalization of nNOS and HO-2 in myenteric ganglia. Nonadrenergic noncholinergic relaxation and cyclic guanosine 3′,5′ monophosphate elevations evoked by electrical field stimulation were diminished markedly in both nNOSΔ/Δ and HO-2Δ/Δ mice. In wild-type mice, NOS inhibitors and HO inhibitors partially inhibited nonadrenergic noncholinergic relaxation. In nNOSΔ/Δ animals, NOS inhibitors selectively lost their efficacy, and HO inhibitors were inactive in HO-2Δ/Δ animals.
Resumo:
Cyclooxyganase-2 (COX-2), a rate-limiting enzyme in the prostaglandin synthesis pathway, is overexpressed in many cancers and contributes to cancer progression through tumor cell-autonomous and paracrine effects. Regular use of non-steroidal anti-inflammatory drugs or selective COX-2 inhibitors (COXIBs) reduces the risk of cancer development and progression, in particular of the colon. The COXIB celecoxib is approved for adjunct therapy in patients with Familial adenomatous polyposis at high risk for colorectal cancer (CRC) formation. Long-term use of COXIBs, however, is associated with potentially severe cardiovascular complications, which hampers their broader use as preventive anticancer agents. In an effort to better understand the tumor-suppressive mechanisms of COXIBs, we identified MAGUK with Inverted domain structure-1 (MAGI1), a scaffolding protein implicated in the stabilization of adherens junctions, as a gene upregulated by COXIB in CRC cells and acting as tumor suppressor. Overexpression of MAGI1 in CRC cell lines SW480 and HCT116 induced an epithelial-like morphology; stabilized E-cadherin and β-catenin localization at cell-cell junctions; enhanced actin stress fiber and focal adhesion formation; increased cell adhesion to matrix proteins and suppressed Wnt signaling, anchorage-independent growth, migration and invasion in vitro. Conversely, MAGI1 silencing decreased E-cadherin and β-catenin localization at cell-cell junctions; disrupted actin stress fiber and focal adhesion formation; and enhanced Wnt signaling, anchorage-independent growth, migration and invasion in vitro. MAGI1 overexpression suppressed SW480 and HCT116 subcutaneous primary tumor growth, attenuated primary tumor growth and spontaneous lung metastasis in an orthotopic model of CRC, and decreased the number and size of metastatic nodules in an experimental model of lung metastasis. Collectively, these results identify MAG1 as a COXIB-induced inhibitor of the Wnt/β-catenin signaling pathway, with tumor-suppressive and anti-metastatic activity in experimental colon cancer.
Resumo:
Hemeoxygenase-2 (HO-2) is an antioxidant enzyme that can modulate recombinant maxi-K(+) channels and has been proposed to be the acute O(2) sensor in the carotid body (CB). We have tested the physiological contribution of this enzyme to O(2) sensing using HO-2 null mice. HO-2 deficiency leads to a CB phenotype characterized by organ growth and alteration in the expression of stress-dependent genes, including the maxi-K(+) channel alpha-subunit. However, sensitivity to hypoxia of CB is remarkably similar in HO-2 null animals and their control littermates. Moreover, the response to hypoxia in mouse and rat CB cells was maintained after blockade of maxi-K(+) channels with iberiotoxin. Hypoxia responsiveness of the adrenal medulla (AM) (another acutely responding O(2)-sensitive organ) was also unaltered by HO-2 deficiency. Our data suggest that redox disregulation resulting from HO-2 deficiency affects maxi-K(+) channel gene expression but it does not alter the intrinsic O(2) sensitivity of CB or AM cells. Therefore, HO-2 is not a universally used acute O(2) sensor.
Resumo:
Aims: 1) to create a new and reproducible animal model to produce heterotopic ossification (HO) 2) to be able to exactly quantify the amount of HO using a microCT scan and 3) to prove the hypothesis that COX-2 inhibitors are efficacious in the prevention of HO. Methods: We developed a IACUC-approved Lewis rat model, in which the ventral side of the right femur was scraped to mechanically disrupt the periosteum. By clamping the vastus intermedius ischemic injury to the muscle was produced to enhance HO. Finally homologous bone marrow from a donor rat was placed on the anterior surface of the femur. Half of the study group (8 rats) received chow mixed with a COX-2 inhibitor, while the other half received normal chow. After 6 weeks the animals were sacrificed, the femurs removed and imaged by microCT. Grading of HO was based on the thickness of ectopic bone as evaluated in a blinded fashion by 3 independent observers. Results: All animals developed bilateral HO. Rats treated with COX-2 inhibitors developed significantly less ectopic bone than the control group rats. Conclusions: The results suggest that we have created a very reliable, reproducible model to form ectopic bone in rats. Using the microCT we can precisely quantify the amount of HO. We have been able to show that COX-2 inhibitors significantly decrease the amount of HO formation and are thus a good alternative to non-specific NSAIDs with their potential serious side effects on the gastrointestinal tract and on hemo-stastis.
Resumo:
Live attenuated vaccines have recently been introduced for preventing rotavirus disease in children. However, alternative strategies for prevention and treatment of rotavirus infection are needed mainly in developing countries where low vaccine coverage occurs. In the present work, N-acetylcysteine (NAC), ascorbic acid (AA), some nonsteroidal anti-inflammatory drugs (NSAIDs) and peroxisome proliferator-activated receptor gamma (PPARγ) agonists were tested for their ability to interfere with rotavirus ECwt infectivity as detected by the percentage of viral antigen-positive cells of small intestinal villi isolated from ECwt-infected ICR mice. Administration of 6 mg NAC/kg every 8 h for three days following the first diarrhoeal episode reduced viral infectivity by about 90%. Administration of AA, ibuprofen, diclofenac, pioglitazone or rosiglitazone decreased viral infectivity by about 55%, 90%, 35%, 32% and 25%, respectively. ECwt infection of mice increased expression of cyclooxygenase-2, ERp57, Hsc70, NF-κB, Hsp70, protein disulphide isomerase (PDI) and PPARγ in intestinal villus cells. NAC treatment of ECwt-infected mice reduced Hsc70 and PDI expression to levels similar to those observed in villi from uninfected control mice. The present results suggest that the drugs tested in the present work could be assayed in preventing or treating rotaviral diarrhoea in children and young animals.
Resumo:
Selective cyclooxygenase-2-inhibitors (COX-2) were developed as an alternative to the non-steroidal anti-inflammatory drugs (NSAID) in order to reduce their known gastrointestinal and renal toxicity. Several recent studies have shown the complex mechanism of the cyclooxygenase-2. The inhibition of the COX-2 has effects on renal hemodynamics, renal salt and water retention and may increase the thromboembolic and therefore the cardiovascular risk. The renal toxicity of the COX-2 inhibitors is similar to that of traditional NSAID. Regarding these data, COX-2 inhibitors should be prescribed with much caution to high risk patients, that is, patients with renal failure and/or cardiovascular diseases.