985 resultados para Cyclin-Dependent Kinases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclin/cyclin-dependent kinase (Cdk) complexes and the Cdk inhibitors (CDKI) are crucial regulators of cell cycle progression in all eukaryotic cells. Using rat cardiac myocytes as a model system, this chapter provides a detailed account of methods that can be employed to measure both cyclin/Cdk activity in cells and the extent of CDKI inhibitory activity present in a particular cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclin/cyclin-dependent kinase (Cdk) complexes and the Cdk inhibitors (CDKI) are crucial regulators of cell cycle progression in all eukaryotic cells. Using rat cardiac myocytes as a model system, this chapter provides a detailed account of methods that can be employed to measure both cyclin/Cdk activity in cells and the extent of CDKI inhibitory activity present in a particular cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell cycle regulatory molecules are implicated in cardiomyocyte hypertrophy. We have investigated protein expression of cyclins A, D1–3, and E and cyclin-dependent kinases (CDKs) 2, 4, 5, and 6 in left ventricular (LV) tissues during the development of LV hypertrophy in rats following aortic constriction (AC). Compared with their expression in sham-operated controls (SH), expression of cyclins D2 and D3 and of CDK4 and CDK6 increased significantly fromday 3 to day 21 after AC concomitant with increased LV mass. However, no significant difference was observed for CDK2 or CDK5. Cyclins A, D1, and E were undetectable. In vitro kinase activities of CDK4 and CDK6 increased ∼70% from day 7 to day 14 in AC myocytes compared with SH myocytes (P< 0.03). Fluorescence-activated cell sorter analysis revealed a G0/G1to G2/M phase progression in AC myocyte nuclei (22.0 ± 1.1% in G2/M) by day 7 postoperation compared with progression in SH myocyte nuclei (14.0 ± 0.8% in G2/M;P < 0.01). Thus an upregulation of certain cell cycle regulators is associated with cardiomyocyte hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanisms responsible for the alterations in proliferative capacity of cardiac myocytes during development remain unknown; however, cell cycle dependent molecules may be involved. We have determined the expression of cyclins A, D1–3and E, and cyclin-dependent kinases (CDKs) 2, 4, 5 and 6 and cdc2 in freshly isolated rat cardiac myocytes from fetal (18 days gestation), neonatal (2 days post-natal) and adult animals by immunoblotting. Our results show a dramatic decrease in expression of these proteins during normal cardiac development, such that levels are highest in fetal myocytes but are significantly down-regulated in adult cells (P<0.05, in each case). We also have determined thein vitrokinase activities of cdc2, CDK2, CDK4, CDK5 and CDK6 immunocomplexes in fetal, neonatal and adult myocytes. There was a consistent and significant loss of cdc2, CDK2, CDK4 and CDK6 kinase activities in adult cardiac cell lysates (5.3-, 10.6-, 1.5- and 1.9-fold decreases, respectively) when compared to neonatal samples (P<0.05); CDK5 activity showed a similar trend but failed to reach significance. In conclusion, our results show that the expression and activities of various positive regulators of the cell cycle are down-regulated significantly during development of the cardiac myocyte, concomitant with the loss of proliferative capacity in adult myocytes. Down-regulation of these proteins may be pivotal in the withdrawal of the cardiac myocyte from the cell cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Realizaram-se dois experimentos para avaliar a eficiência da bohemina e roscovitina associadas à ionomicina para ativação partenogenética e desenvolvimento embrionário inicial de bovinos. No primeiro, foram testadas diferentes concentrações (0, 50, 75 ou 100µM) e diferentes tempos de exposição (2, 4 ou 6 horas) à bohemina ou à roscovitina na ativação de oócitos bovinos maturados in vitro (MIV) pré-expostos à ionomicina. Os melhores tratamentos, bohemina 75µM e roscovitina 50µM, ambos por seis horas, foram utilizados no segundo experimento, no qual oócitos bovinos MIV foram expostos à ionomicina seguido ou não pelo tratamento com inibidores específicos das quinases dependentes de ciclina (CDKI), e avaliados quanto à configuração nuclear, taxa de ativação e desenvolvimento até blastocisto. Os tratamentos combinados (ionomicina+CDKI) apresentaram melhor taxa de ativação (77,3%) e desenvolvimento embrionário inicial (35,2%) do que a ionomicina sozinha (69,4% e 21,9%, respectivamente), e também promoveram ativação mais uniforme (aproximadamente 90% de formação de um pronúcleo). Estes resultados demonstram que os CDKIs potencializam o efeito da ionomicina na ativação e desenvolvimento embrionário inicial e podem auxiliar na obtenção de protocolos de ativação mais eficientes, aumentando a capacidade de desenvolvimento de embriões produzidos por meio de biotécnicas reprodutivas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) successively phosphorylate the retinoblastoma protein (RB) at the restriction point in G1 phase. Hyperphosphorylation results in functional inactivation of RB, activation of the E2F transcriptional program, and entry of cells into S phase. RB unphosphorylated at serine 608 has growth suppressive activity. Phosphorylation of serines 608/612 inhibits binding of E2F-1 to RB. In Nalm-6 acute lymphoblastic leukemia extracts, serine 608 is phosphorylated by CDK4/6 complexes but not by CDK2. We reasoned that phosphorylation of serines 608/612 by redundant CDKs could accelerate phospho group formation and determined which G1 CDK contributes to serine 612 phosphorylation. Here, we report that CDK4 complexes from Nalm-6 extracts phosphorylated in vitro the CDK2-preferred serine 612, which was inhibited by p16INK4a, and fascaplysin. In contrast, serine 780 and serine 795 were efficiently phosphorylated by CDK4 but not by CDK2. The data suggest that the redundancy in phosphorylation of RB by CDK2 and CDK4 in Nalm-6 extracts is limited. Serine 612 phosphorylation by CDK4 also occurred in extracts of childhood acute lymphoblastic leukemia cells but not in extracts of mobilized CD34+ hemopoietic progenitor cells. This phenomenon could contribute to the commitment of childhood acute lymphocytic leukemia cells to proliferate and explain their refractoriness to differentiation-inducing agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation of cyclin-dependent kinases (cdks) has been implicated in apoptosis induced by various stimuli. We find that the Fas-induced activation of cdc2 and cdk2 in Jurkat cells is not dependent on protein synthesis, which is shut down very early during apoptosis before caspase-3 activation. Instead, activation of these kinases seems to result from both a rapid cleavage of Wee1 (an inhibitory kinase of cdc2 and cdk2) and inactivation of anaphase-promoting complex (the specific system for cyclin degradation), in which CDC27 homolog is cleaved during apoptosis. Both Wee1 and CDC27 are shown to be substrates of the caspase-3-like protease. Although cdk activities are elevated during Fas-induced apoptosis in Jurkat cells, general activation of the mitotic processes does not occur. Our results do not support the idea that apoptosis is simply an aberrant mitosis but, instead, suggest that a subset of mitotic mechanisms plays an important role in apoptosis through elevated cdk activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of the central nervous system requires proliferation of neuronal and glial cell precursors followed by their subsequent differentiation in a highly coordinated manner. The timing of neuronal cell cycle exit and differentiation is likely to be regulated in part by inhibitors of cyclin-dependent kinases. Overlapping and sustained patterns of expression of two cyclin-dependent kinases, p19Ink4d and p27Kip1, in postmitotic brain cells suggested that these proteins may be important in actively repressing neuronal proliferation. Animals derived from crosses of Ink4d- null with Kip1-null mice exhibited bradykinesia, proprioceptive abnormalities, and seizures, and died at about 18 days after birth. Metabolic labeling of live animals with bromodeoxyuridine at postnatal days 14 and 18, combined with immunolabeling of neuronal markers, showed that subpopulations of central nervous system neurons were proliferating in all parts of the brain, including normally dormant cells of the hippocampus, cortex, hypothalamus, pons, and brainstem. These cells also expressed phosphorylated histone H3, a marker for late G2 and M-phase progression, indicating that neurons were dividing after they had migrated to their final positions in the brain. Increased proliferation was balanced by cell death, resulting in no gross changes in the cytoarchitecture of the brains of these mice. Therefore, p19Ink4d and p27Kip1 cooperate to maintain differentiated neurons in a quiescent state that is potentially reversible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-hybrid technology provides a simple way to isolate small peptide aptamers that specifically recognize and strongly bind to a protein of interest. These aptamers have the potential to dominantly interfere with specific activities of their target proteins and, therefore, could be used as in vivo inhibitors. Here we explore the ability to use peptide aptamers as in vivo inhibitors by expressing aptamers directed against cell cycle regulators in Drosophila. We expressed two peptide aptamers, each of which specifically recognizes one of the two essential cyclin-dependent kinases (Cdks), DmCdk1 and DmCdk2, in Drosophila. Expression of each Cdk aptamer during organogenesis caused adult eye defects typical of those caused by cell cycle inhibition. Co-overexpression of DmCdk1 or DmCdk2 resulted in suppression of the eye phenotypes, indicating that each aptamer interacts with a Cdk target in vivo and suggesting that these peptides disrupt normal eye development by inhibiting Cdk function. Moreover, the specificity of each aptamer for one of the two Cdks as determined in two-hybrid assays was retained in Drosophila. Combined, our results demonstrate that peptide aptamers generated by yeast two-hybrid methods can serve as inhibitory reagents to target specific proteins in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclin-dependent kinases (CDKs) are commonly known to regulate cell proliferation. However, previous reports suggest that in cultured postmitotic neurons, activation of CDKs is a signal for death rather than cell division. We determined whether CDK activation occurs in mature adult neurons during focal stroke in vivo and whether this signal was required for neuronal death after reperfusion injury. Cdk4/cyclin D1 levels and phosphorylation of its substrate retinoblastoma protein (pRb) increase after stroke. Deregulated levels of E2F1, a transcription factor regulated by pRb, are also observed. Administration of a CDK inhibitor blocks pRb phosphorylation and the increase in E2F1 levels and dramatically reduces neuronal death by 80%. These results indicate that CDKs are an important therapeutic target for the treatment of reperfusion injury after ischemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complications of atherosclerosis such as myocardial infarction and stroke are the primary cause of death in Western societies. The development of atherosclerotic lesions is a complex process, including endothelial cell dysfunction, inflammation, extracellular matrix alteration and vascular smooth muscle cell (VSMC) proliferation and migration. Various cell cycle regulatory proteins control VSMC proliferation. Protein kinases called cyclin dependent kinases (CDKs) play a major role in regulation of cell cycle progression. At specific phases of the cell cycle, CDKs pair with cyclins to become catalytically active and phosphorylate numerous substrates contributing to cell cycle progression. CDKs are also regulated by cyclin dependent kinase inhibitors, activating and inhibitory phosphorylation, proteolysis and transcription factors. This tight regulation of cell cycle is essential; thus its deregulation is connected to the development of cancer and other proliferative disorders such as atherosclerosis and restenosis as well as neurodegenerative diseases. Proteins of the cell cycle provide potential and attractive targets for drug development. Consequently, various low molecular weight CDK inhibitors have been identified and are in clinical development. Tylophorine is a phenanthroindolizidine alkaloid, which has been shown to inhibit the growth of several human cancer cell lines. It was used in Ayurvedic medicine to treat inflammatory disorders. The aim of this study was to investigate the effect of tylophorine on human umbilical vein smooth muscle cell (HUVSMC) proliferation, cell cycle progression and the expression of various cell cycle regulatory proteins in order to confirm the findings made with tylophorine in rat cells. We used several methods to determine our hypothesis, including cell proliferation assay, western blot and flow cytometric cell cycle distribution analysis. We demonstrated by cell proliferation assay that tylophorine inhibits HUVSMC proliferation dose-dependently with an IC50 value of 164 nM ± 50. Western blot analysis was used to determine the effect of tylophorine on expression of cell cycle regulatory proteins. Tylophorine downregulates cyclin D1 and p21 expression levels. The results of tylophorine’s effect on phosphorylation sites of p53 were not consistent. More sensitive methods are required in order to completely determine this effect. We used flow cytometric cell cycle analysis to investigate whether tylophorine interferes with cell cycle progression and arrests cells in a specific cell cycle phase. Tylophorine was shown to induce the accumulation of asynchronized HUVSMCs in S phase. Tylophorine has a significant effect on cell cycle, but its role as cell cycle regulator in treatment of vascular proliferative diseases and cancer requires more experiments in vitro and in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.