939 resultados para Cyclic testing
Resumo:
"Date Declassified: September 23, 1955."
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract: Highway bridges have great values in a country because in case of any natural disaster they may serve as lines to save people’s lives. Being vulnerable under significant seismic loads, different methods can be considered to design resistant highway bridges and rehabilitate the existing ones. In this study, base isolation has been considered as one efficient method in this regards which in some cases reduces significantly the seismic load effects on the structure. By reducing the ductility demand on the structure without a notable increase of strength, the structure is designed to remain elastic under seismic loads. The problem associated with the isolated bridges, especially with elastomeric bearings, can be their excessive displacements under service and seismic loads. This can defy the purpose of using elastomeric bearings for small to medium span typical bridges where expansion joints and clearances may result in significant increase of initial and maintenance cost. Thus, supplementing the structure with dampers with some stiffness can serve as a solution which in turn, however, may increase the structure base shear. The main objective of this thesis is to provide a simplified method for the evaluation of optimal parameters for dampers in isolated bridges. Firstly, performing a parametric study, some directions are given for the use of simple isolation devices such as elastomeric bearings to rehabilitate existing bridges with high importance. Parameters like geometry of the bridge, code provisions and the type of soil on which the structure is constructed have been introduced to a typical two span bridge. It is concluded that the stiffness of the substructure, soil type and special provisions in the code can determine the employment of base isolation for retrofitting of bridges. Secondly, based on the elastic response coefficient of isolated bridges, a simplified design method of dampers for seismically isolated regular highway bridges has been presented in this study. By setting objectives for reduction of displacement and base shear variation, the required stiffness and damping of a hysteretic damper can be determined. By modelling a typical two span bridge, numerical analyses have followed to verify the effectiveness of the method. The method has been used to identify equivalent linear parameters and subsequently, nonlinear parameters of hysteretic damper for various designated scenarios of displacement and base shear requirements. Comparison of the results of the nonlinear numerical model without damper and with damper has shown that the method is sufficiently accurate. Finally, an innovative and simple hysteretic steel damper was designed. Five specimens were fabricated from two steel grades and were tested accompanying a real scale elastomeric isolator in the structural laboratory of the Université de Sherbrooke. The test procedure was to characterize the specimens by cyclic displacement controlled tests and subsequently to test them by real-time dynamic substructuring (RTDS) method. The test results were then used to establish a numerical model of the system which went through nonlinear time history analyses under several earthquakes. The outcome of the experimental and numerical showed an acceptable conformity with the simplified method.
Resumo:
Context. About 2/3 of the Be stars present the so-called V/R variations, a phenomenon characterized by the quasi-cyclic variation in the ratio between the violet and red emission peaks of the HI emission lines. These variations are generally explained by global oscillations in the circumstellar disk forming a one-armed spiral density pattern that precesses around the star with a period of a few years. Aims. This paper presents self-consistent models of polarimetric, photometric, spectrophotometric, and interferometric observations of the classical Be star zeta Tauri. The primary goal is to conduct a critical quantitative test of the global oscillation scenario. Methods. Detailed three-dimensional, NLTE radiative transfer calculations were carried out using the radiative transfer code HDUST. The most up-to-date research on Be stars was used as input for the code in order to include a physically realistic description for the central star and the circumstellar disk. The model adopts a rotationally deformed, gravity darkened central star, surrounded by a disk whose unperturbed state is given by a steady-state viscous decretion disk model. It is further assumed that this disk is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disk model for zeta Tauri and a rigorous solution of the radiative transfer, a very good fit of the time-average properties of the disk was obtained. This provides strong theoretical evidence that the viscous decretion disk model is the mechanism responsible for disk formation. The global oscillation model successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations in the H alpha and Br gamma lines. This result convincingly demonstrates that the oscillation pattern in the disk is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Resumo:
Introduction: The aim of this study was to assess cyclic fatigue resistance in rotary nickel-titanium instruments submitted to nitrogen ion implantation by using a custom-made cyclic fatigue testing apparatus. Methods: Thirty K3 files, size #25, taper 0.04, were divided into 3 experimental groups as follows: group A, 12 files exposed to nitrogen ion implantation at a dose of 2.5 x 10(17) ions/cm(2), accelerating voltage of 200 kV, currents of 1 mu A/cm(2), 130 degrees C temperature, and vacuum conditions of 10 x 10(-6) torr for 6 hours; group B, 12 nonimplanted files; and group C, 6 files submitted to thermal annealing for 6 hours at 130 degrees C. One extra file was used for process control. All files were submitted to a cyclic fatigue test that was performed with an apparatus that allowed the instruments to rotate freely, simulating rotary instrumentation of a curved canal (40-degree, 5-mm radius curve). An electric motor handpiece was used with a contra-angle of 16:1 at an operating speed of 300 rpm and a torque of 2 N-cm. Time to failure was recorded with a stopwatch in seconds and subsequently converted to number of cycles to fracture. Data were analyzed with the Student t test (P < .05). Results: Ion-implanted instruments reached significantly higher cycle numbers before fracture (mean, 510 cycles) when compared with annealed (mean, 428 cycles) and nonimplanted files (mean, 381 cycles). Conclusions: Our results showed that nitrogen ion implantation improves cyclic fatigue resistance in rotary nickel-titanium instruments. Industrial implementation. of this surface modification technique would produce rotary nickel-titanium instruments with a longer working life. (J Endod 2010;36:1183-1186)
Resumo:
Gravity loads can affect a reinforced concrete structure's response to seismic actions, however, traditional procedures for testing the beam behaviour do not take this effect into consideration. An experimental campaign was carried out in order to assess the influence of the gravity load on RC beam connection to the column subjected to cyclic loading. The experiments included the imposition of a conventional quasi-static test protocol based on the imposition of a reverse cyclic displacement history and of an alternative cyclic test procedure starting from the gravity load effects. The test results are presented, compared and analysed in this paper. The imposition of a cyclic test procedure that included the gravity loads effects on the RC beam ends reproduces the demands on the beams' critical zones more realistically than the traditional procedure. The consideration of the vertical load effects in the test procedure led to an accumulation of negative (hogging) deformation. This phenomenon is sustained with the behaviour of a portal frame system under cyclic loads subject to a significant level of the vertical load, leading to the formation of unidirectional plastic hinges. In addition, the hysteretic behaviour of the RC beam ends tested was simulated numerically using the nonlinear structural analysis software - OpenSees. The beam-column model simulates the global element behaviour very well, as there is a reasonable approximation to the hysteretic loops obtained experimentally. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: Testing for HIV tropism is recommended before prescribing a chemokine receptor blocker. To date, in most European countries HIV tropism is determined using a phenotypic test. Recently, new data have emerged supporting the use of a genotypic HIV V3-loop sequence analysis as the basis for tropism determination. The European guidelines group on clinical management of HIV-1 tropism testing was established to make recommendations to clinicians and virologists. Methods: We searched online databases for articles from Jan 2006 until March 2010 with the terms: tropism or CCR5-antagonist or CCR5 antagonist or maraviroc or vicriviroc. Additional articles and/or conference abstracts were identified by hand searching. This strategy identified 712 potential articles and 1240 abstracts. All were reviewed and finally 57 papers and 42 abstracts were included and used by the panel to reach a consensus statement. Results: The panel recommends HIV-tropism testing for the following indications: i) drug-naïve patients in whom toxicity or limited therapeutic options are foreseen; ii) patients experiencing therapy failure whenever a treatment change is considered. Both the phenotypic Enhanced Trofile assay (ESTA) and genotypic population sequencing of the V3-loop are recommended for use in clinical practice. Although the panel does not recommend one methodology over another it is anticipated that genotypic testing will be used more frequently because of its greater accessibility, lower cost and shorter turnaround time. The panel also provides guidance on technical aspects and interpretation issues. If using genotypic methods, triplicate PCR amplification and sequencing testing is advised using the G2P interpretation tool (clonal model) with an FPR of 10%. If the viral load is below the level of reliable amplification, proviral DNA can be used, and the panel recommends performing triplicate testing and use of an FPR of 10%. If genotypic DNA testing is not performed in triplicate the FPR should be increased to 20%. Conclusions: The European guidelines on clinical management of HIV-1 tropism testing provide an overview of current literature, evidence-based recommendations for the clinical use of tropism testing and expert guidance on unresolved issues and current developments. Current data support both the use of genotypic population sequencing and ESTA for co-receptor tropism determination. For practical reasons genotypic population sequencing is the preferred method in Europe.
Resumo:
Objectives. Evaluate the flexural strength (sigma) and subcritical crack growth (SCG) under cyclic loading of glass-infiltrated alumina-based (IA, In-Ceram Alumina) and zirconia-reinforced (IZ, In-Ceram Zirconia) ceramics, testing the hypothesis that wet environment influences the SCG of both ceramics when submitted to cyclic loading.Methods. Bar-shaped specimens of IA (n = 45) and IZ ( n = 45) were fabricated and loaded in three-point bending (3P) in 37 degrees C artificial saliva (IA(3P) and IZ(3P)) and cyclic fatigued (F) in dry (D) and wet (W) conditions (IA(FD), IA(FW), IZ(FD), IZ(FW)). The initial sigma and the number of cycles to fracture were obtained from 3P and F tests, respectively. Data was examined using Weibull statistics. The SCG behavior was described in terms of crack velocity as a function of maximum stress intensity factor (K(Imax)).Results. The Weibull moduli (m = 8) were similar for both ceramics. The characteristic strength (sigma(0)) of IA and IZ was and 466 MPa 550 MPa, respectively. The wet environment significantly increased the SCG of IZ, whereas a less evident effect was observed for IA. In general, both ceramics were prone to SCG, with crack propagation occurring at K(I) as low as 43-48% of their critical K(I). The highest sigma of IZ should lead to longer lifetimes for similar loading conditions.Significance. Water combined with cyclic loading causes pronounced SCG in IZ and IA materials. The lifetime of dental restorations based on these ceramics is expected to increase by reducing their direct exposure to wet conditions and/or by using high content zirconia ceramics with higher strength. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. Disc-shaped zirconia specimens (Ø: 15mm, thickness: 1.2mm) (N=32) were submitted to one of the air-particle abrasion protocols (n=8 per group): (a) 50μm Al2O3 particles, (b) 110μm Al2O3 particles coated with silica (Rocatec Plus), (c) 30μm Al2O3 particles coated with silica (CoJet Sand) for 20s at 2.8bar pressure. Control group received no air-abrasion. All specimens were initially cyclic loaded (×20,000, 50N, 1Hz) in water at 37°C and then subjected to biaxial flexural strength testing where the conditioned surface was under tension. Zirconia surfaces were characterized and roughness was measured with 3D surface profilometer. Phase transformation from tetragonal to monoclinic was determined by Raman spectroscopy. The relative amount of transformed monoclinic zirconia (FM) and transformed zone depth (TZD) were measured using XRD. The data (MPa) were analyzed using ANOVA, Tukey's tests and Weibull modulus (m) were calculated for each group (95% CI). The biaxial flexural strength (MPa) of CoJet treated group (1266.3±158A) was not significantly different than that of Rocatec Plus group (1179±216.4A,B) but was significantly higher than the other groups (Control: 942.3±74.6C; 50μm Al2O3: 915.2±185.7B,C). Weibull modulus was higher for control (m=13.79) than those of other groups (m=4.95, m=5.64, m=9.13 for group a, b and c, respectively). Surface roughness (Ra) was the highest with 50μm Al2O3 (0.261μm) than those of other groups (0.15-0.195μm). After all air-abrasion protocols, FM increased (15.02%-19.25%) compared to control group (11.12%). TZD also showed increase after air-abrasion protocols (0.83-1.07μm) compared to control group (0.59μm). Air-abrasion protocols increased the roughness and monoclinic phase but in turn abrasion with 30μm Al2O3 particles coated with silica has increased the biaxial flexural strength of the tested zirconia. © 2013 Elsevier Ltd.
Resumo:
This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 μm Al2O3 (2.5 bar); Gr3: 50 μm Al2O3 (3.5 bar); Gr4: 110 μm Al2O3(2.5 bar); Gr5: 110 μm Al2O3 (3.5 bar); Gr6: 30 μm SiO2 (2.5 bar) (CoJet); Gr7: 30 μm SiO2(3.5 bar); Gr8: 110 μm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 μm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 μm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1030±153, Controlaged: 1138±138; Experimentalnon-aged: 1307±184-1554±124; Experimentalaged: 1308±118-1451±135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 μm Al2O3(0.84 μm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 μm SiO2) and 110 μm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 μm, with the highest values for Rocatec Plus and 110 μm Al2O3 groups at 3.5 bar pressure. © 2013 Elsevier Ltd.
Resumo:
As compared with continuous rotary systems, reciprocating motion is believed to increase the fatigue resistance of NiTi instruments. We compared the cyclic fatigue and torsional resistance of reciprocating single-file systems and continuous rotary instrumentation systems in simulated root canals. Eighty instruments from the ProTaper Universal, WaveOne, MTwo, and Reciproc systems (n = 20) were submitted to dynamic bending testing in stainless-steel simulated curved canals. Axial displacement of the simulated canals was performed with half of the instruments (n = 10), with back-and-forth movements in a range of 1.5 mm. Time until fracture was recorded, and the number of cycles until instrument fracture was calculated. Cyclic fatigue resistance was greater for reciprocating systems than for rotary systems (P < 0.05). Instruments from the Reciproc and WaveOne systems significantly differed only when axial displacement occurred (P < 0.05). Instruments of the ProTaper Universal and MTwo systems did not significantly differ (P > 0.05). Cyclic fatigue and torsional resistance were greater for reciprocating systems than for continuous rotary systems, irrespective of axial displacement.
Resumo:
The aim of this randomised, controlled in vivo study in an ovine model was to investigate the effect of cylic pneumatic pressure on fracture healing. We performed a transverse osteotomy of the right radius in 37 sheep. They were randomised to a control group or a treatment group where they received cyclic loading of the osteotomy by the application of a pressure cuff around the muscles of the proximal forelimb. Sheep from both groups were killed at four or six weeks. Radiography, ultrasonography, biomechanical testing and histomorphometry were used to assess the differences between the groups. The area of periosteal callus, peak torsional strength, fracture stiffness, energy absorbed over the first 10° of torsion and histomorphometric analysis all showed that the osteotomies treated with the cyclic pneumatic pressure at four weeks were not significantly different from the control osteotomies at six weeks.
Resumo:
A novel cyclic sulfonium cation-based ionic liquid (IL) with an ether-group appendage and the bis{(trifluoromethyl)sulfonyl}imide anion was synthesised and developed for electrochemical double layer capacitor (EDLC) testing. The synthesis and chemical-physical characterisation of the ether-group containing IL is reported in parallel with a similarly sized alkyl-functionalised sulfonium IL. Results of the chemical-physical measurements demonstrate how important transport properties, i.e. viscosity and conductivity, can be promoted through the introduction of the ether-functionality without impeding thermal, chemical or electrochemical stability of the IL. Although the apparent transport properties are improved relative to the alkyl-functionalised analogue, the ether-functionalised sulfonium cation-based IL exhibits moderately high viscosity, and poorer conductivity, when compared to traditional EDLC electrolytes based on organic solvents (propylene carbonate and acetonitrile). Electrochemical testing of the ether-functionalised sulfonium IL was conducted using activated carbon composite electrodes to inspect the performance of the IL as a solvent-free electrolyte for EDLC application. Good cycling stability was achieved over the studied range and the performance was comparable to other solvent free,
IL-based EDLC systems. Nevertheless, limitations of the attainable performance are primarily the result of sluggish transport properties and a restricted operative voltage of the IL, thus highlighting key aspects of this field which require further attention.
Resumo:
© 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Resumo:
OBJECTIVES: The purpose of this in vitro study was to evaluate misfit alterations at the implant/abutment interface of external and internal connection implant systems when subjected to cyclic loading. MATERIAL AND METHODS: Standard metal crowns were fabricated for 5 groups (n=10) of implant/abutment assemblies: Group 1, external hexagon implant and UCLA cast-on premachined abutment; Group 2, internal hexagon implant and premachined abutment; Group 3, internal octagon implant and prefabricated abutment; Group 4, external hexagon implant and UCLA cast-on premachined abutment; and Group 5, external hexagon implant and Ceraone abutment. For groups 1, 2, 3 and 5, the crowns were cemented on the abutments and in group 4 crowns were screwed directly on the implant. The specimens were subjected to 500,000 cycles at 19.1 Hz of frequency and non-axial load of 133 N in a MTS 810 machine. The vertical misfit (μm) at the implant/abutment interface was evaluated before (B) and after (A) application of the cyclic loading. Data were analyzed statistically by using two-away ANOVA and Tukey's post-hoc test (p<0.05). RESULTS: Before loading values showed no difference among groups 2 (4.33±3.13), 3 (4.79±3.43) and 5 (3.86±4.60); between groups 1 (12.88±6.43) and 4 (9.67±3.08), and among groups 2, 3 and 4. However, groups 1 and 4 were significantly different from groups 2, 3 and 5. After loading values of groups 1 (17.28±8.77) and 4 (17.78±10.99) were significantly different from those of groups 2 (4.83±4.50), 3 (8.07±4.31) and 5 (3.81±4.84). There was a significant increase in misfit values of groups 1, 3 and 4 after cyclic loading, but not for groups 2 and 5. CONCLUSIONS: The cyclic loading and type of implant/abutment connection may develop a role on the vertical misfit at the implant/abutment interface.