889 resultados para Cycle graphs
Resumo:
Department of Mathematics, Cochin University of Science and Technology
Resumo:
Let M = (V, E, A) be a mixed graph with vertex set V, edge set E and arc set A. A cycle cover of M is a family C = {C(1), ... , C(k)} of cycles of M such that each edge/arc of M belongs to at least one cycle in C. The weight of C is Sigma(k)(i=1) vertical bar C(i)vertical bar. The minimum cycle cover problem is the following: given a strongly connected mixed graph M without bridges, find a cycle cover of M with weight as small as possible. The Chinese postman problem is: given a strongly connected mixed graph M, find a minimum length closed walk using all edges and arcs of M. These problems are NP-hard. We show that they can be solved in polynomial time if M has bounded tree-width. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A graph G is a common multiple of two graphs H-1 and H-2 if there exists a decomposition of G into edge-disjoint copies of H-1 and also a decomposition of G into edge-disjoint copies of H-2. In this paper, we consider the case where H-1 is the 4-cycle C-4 and H-2 is the complete graph with n vertices K-n. We determine, for all positive integers n, the set of integers q for which there exists a common multiple of C-4 and K-n having precisely q edges. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),.. , c(k). If an m-cycle C in G has n(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar n(i) - n(j)vertical bar <= 1 for any i, j is an element of {1, 2,..., k}, then C is said to be equitably k-coloured. An m-cycle decomposition C of a graph G is equitably k-colourable if the vertices of G can be coloured so that every m-cycle in W is equitably k-coloured. For m = 3, 4 and 5 we completely settle the existence question for equitably 3-colourable m-cycle decompositions of complete equipartite graphs. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Let G be a graph in which each vertex has been coloured using one of k colours, say c(1), c(2),..., c(k). If an m-cycle C in G has x(i) vertices coloured c(i), i = 1, 2,..., k, and vertical bar x(i) - x(j)vertical bar
Resumo:
The circulant graph Sn, where S ⊆ Zn \ {0}, has vertex set Zn and edge set {{x, x + s}|x ∈ Zn, s ∈ S}. It is shown that there is a Hamilton cycle decomposition of every 6-regular circulant graph Sn in which S has an element of order n.
Resumo:
In this paper we determine the local and global resilience of random graphs G(n,p) (p >> n(-1)) with respect to the property of containing a cycle of length at least (1 - alpha)n. Roughly speaking, given alpha > 0, we determine the smallest r(g) (G, alpha) with the property that almost surely every subgraph of G = G(n,p) having more than r(g) (G, alpha)vertical bar E(G)vertical bar edges contains a cycle of length at least (1 - alpha)n (global resilience). We also obtain, for alpha < 1/2, the smallest r(l) (G, alpha) such that any H subset of G having deg(H) (v) larger than r(l) (G, alpha) deg(G) (v) for all v is an element of V(G) contains a cycle of length at least (1 - alpha)n (local resilience). The results above are in fact proved in the more general setting of pseudorandom graphs.
Resumo:
A 4-cycle in a tripartite graph with vertex partition {V-1, V-2, V-3} is said to be gregarious if it has at least one vertex in each V-i, 1 less than or equal to i less than or equal to 3. In this paper, necessary and sufficient conditions are given for the existence of an edge-disjoint decomposition of any complete tripartite graph into gregarious 4-cycles.
Resumo:
Necessary and sufficient conditions are given for the edge-disjoint decomposition of a complete tripartite graph K-r,K-s,K-t into exactly alpha 3-cycles and beta 4-cycles. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Necessary and sufficient conditions for the existence of an edge-disjoint decomposition of any complete multipartite graph into even length cycles are investigated. Necessary conditions are listed and sufficiency is shown for the cases when the cycle length is 4, 6 or 8. Further results concerning sufficiency, provided certain small decompositions exist, are also given for arbitrary even cycle lengths.
Resumo:
A 1-factorisation of a graph is perfect if the union of any two of its 1-factors is a Hamiltonian cycle. Let n = p(2) for an odd prime p. We construct a family of (p-1)/2 non-isomorphic perfect 1-factorisations of K-n,K-n. Equivalently, we construct pan-Hamiltonian Latin squares of order n. A Latin square is pan-Hamiltoilian if the permutation defined by any row relative to any other row is a single Cycle. (C) 2002 Elsevier Science (USA).
Resumo:
Let K(r,s,t) denote the complete tripartite graph with partite sets of sizes r, s and t, where r less than or equal to s less than or equal to t. Necessary and sufficient conditions are given for decomposability of K(r, s, t) into 5-cycles whenever r, s and t are all even. This extends work done by Mahmoodian and Mirza-khani (Decomposition of complete tripartite graphs into 5-cycles, in: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235-241) and Cavenagh and Billington. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The conjecture claiming that every planar graph is acyclic 5-choosable[Borodin et al., 2002] has been verified for several restricted classes of planargraphs. Recently, O. V. Borodin and A. O. Ivanova, [Journal of Graph Theory,68(2), October 2011, 169-176], have shown that a planar graph is acyclically 5-choosable if it does not contain an i-cycle adjacent to a j-cycle, where 3<=j<=5 if i=3 and 4<=j<=6 if i=4. We improve the above mentioned result and prove that every planar graph without an i-cycle adjacent to a j-cycle with3<=j<=5 if i=3 and 4<=j<=5 if i=4 is acyclically 5-choosable.
Resumo:
A geodesic in a graph G is a shortest path between two vertices of G. For a specific function e(n) of n, we define an almost geodesic cycle C in G to be a cycle in which for every two vertices u and v in C, the distance d(G)(u, v) is at least d(C)(u, v) - e(n). Let omega(n) be any function tending to infinity with n. We consider a random d-regular graph on n vertices. We show that almost all pairs of vertices belong to an almost geodesic cycle C with e(n)= log(d-1)log(d-1) n+omega(n) and vertical bar C vertical bar =2 log(d-1) n+O(omega(n)). Along the way, we obtain results on near-geodesic paths. We also give the limiting distribution of the number of geodesics between two random vertices in this random graph. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 66: 115-136, 2011