993 resultados para Cyanobacteria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alkanes having unusual saturated isoprenoidal and methyl-branched structures have been isolated from the bitumen of several sediments. The methanogenic biomarkers 2,6,10,15,19-pentamethyleicosane and squalane were found in sediments which also contained bacteriogenic glycerol ethers. However, in one ether-containing sediment, 2,6,10,13,17,21-hexamethyldocosane was tentatively identified and this compound was found in place of the established alkane biomarkers. Other hydrocarbons found were regular C21 and C23 isoprenoid alkanes, compounds which cannot be derived from phytol; two isoprenoids of the type 3,7,11.-polymethylalkane, previously reported only in petroleums; 8-methylheptadecane, a probable biomarker for cyanobacteria and a number of its homologs and other methyl-branched alkanes. Ubiquitous branched-chain alkylbenzenes and a homology of trimethylalkylbenzenes were also isolated. Most, or all, of the compounds reported here are probably not catagenetic products but may represent direct algal or bacterial bioinputs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dark, organic-rich sediments were recovered from the lower Miocene section (~16.6 Ma) in Hole 985A in the Norway Basin during Ocean Drilling Program Leg 162. Organic carbon and total sulfur contents of the dark sediments showed a maximum concentration of 5.6 and 26.1 wt%, respectively. Sulfur enrichment in the sediments indicates that these dark layers were formed under anoxic conditions in bottom water. Four dark and eight greenish gray sediment samples, ranging in age from early Miocene to Pleistocene, were analyzed for lipid-class compounds (aliphatic hydrocarbons, fatty alcohols, and sterols) using gas chromatography (GC) and GC/mass spectrometry to better understand the formation processes of the organic-rich dark layers and to reconstruct the paleoenvironmental changes. The molecular distributions of n-alkanes and fatty alcohols indicate that terrigenous organic matter largely contributed to both types of sediments. Significant amounts of hopanoid hydrocarbons, such as diploptene and hop-17(21)-ene, however, were detected characteristically in the dark sediments, which suggests that prokaryotes such as methane-oxidizing bacteria or cyanobacteria may have significantly contributed to the formation of these organic-rich, dark sediments. These results indicate that the bottom waters of the Norway Basin had been subjected to anoxic conditions during the early Miocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Species composition, cell number and biomass of pico-, nanno- and microalgae were estimated for open waters of the northern subtropical zone of the Pacific Ocean and coastal waters off the North America. Total phytoplankton abundance was also evaluated. Productivity of these waters was newly estimated. Distribution of phytoplankton, its size, and taxonomic groups were compared with chlorophyll distribution estimated during the same cruise. Dissimilarities between distribution of small and large forms result from their adaptation to various peculiarities of the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates organic-rich sedimentary sequences deposited during the early Aptian Oceanic Anoxic Event (OAE1a) at Sites 1207 and 1213 on Shatsky Rise (ODP Leg 198) in the west-central Pacific. Biomarker analyses provide evidence of the algal and bacterial origin of organic matter (OM) in these sediments where the abundance of steroidal components, particularly sterenes and sterones, suggests that the OM includes major contributions from eukaryotic sources in an environment characterized by high phytoplankton productivity. The presence of alkenones at Site 1213B is diagnostic of OM derived from representatives of haptophyte algae among the calcareous nannoplankton and their d13C values (average -31.6 per mil) are consistent with those expected during elevated pCO2. The occurrence and prominence of 2b-methylhopanes and 2b-methylhopanones indicates significant contributions to the OM from cyanobacteria, which are also likely contributors of hopanoids based on their d13C compositions. These biomarker data suggest that oceanic conditions, perhaps nitrate- or iron-limited, were conducive to cyanobacteria production during OAE1a, which appears to distinguish this event from other Cretaceous OAE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60-8000 m**3/s of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"In cooperation with National Botanic Gardens Lucknow, India."

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorination was investigated as a treatment option for degrading and thus removing saxitoxins (paralytic shellfish poisons, PSPs) produced by cyanobacteria (blue-green algae) from water. It was found to be effective with the order of ease of degradation of the saxitoxins being GTX5 (B1) similar to dcSTX > STX > GTX3 similar to C2 > C1 > GTX2. However the effectiveness of chlorine was pH dependent. Degradation as a function of pH was not linear with the degree of degradation increasing rapidly at around pH 7.5. At pH 9 > 90% removal was possible provided a residual of 0.5 mg l(-1) free chlorine was present after 30 min contact time. The more effective degradation at higher pH was unexpected as chlorine is known to be a weaker oxidant under these conditions. The more effective degradation, then, must be due to the toxins, which are ionisable molecules, being present in a form at higher pH which is more susceptible to oxidation. The feasibility of using chlorine to remove saxitoxins during water treatment will therefore depend strongly on the pH of the water being chlorinated. Degradation may be improved by pH adjustment but may not be a practical solution. Although saxitoxins were degraded in that the parent compounds were not detected by chemical analysis, there is no indication as to the nature of the degradation products. However, acute toxicity as determined by the mouse bioassay was eliminated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichodesmium sp. isolated from the Great Barrier Reef lagoon was cultured in artificial seawater media containing a range of salinities. Trichodesmium sp. actively grew over a wide range of salinities (22 to 43 psu) and hence can be classed as euryhaline. Maximum growth occurred with salinities in the range 33 to 37 psu. Chl a content and alkaline phosphatase activity were found to increase with salinity over the range 22 to 43 psu, but the N-2 fixation rate was reduced at salinities below and above the range for maximum growth. Growth in media exhibiting maximum growth was characterised by well-dispersed cultures of filaments, while significant aggregations of filaments formed in other media. It is proposed that the tendency for Trichodesmium filaments to aggregate in media with salinities outside the range for maximum growth is an opportunistic response to a deficiency of cellular nitrogen, which results from the reduced N-2 fixation rates, and the aggregation occurs in order to enhance the uptake of combined N released within the aggregates and/or the N-2 fixation within the aggregates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m(-2)), and productive (up to 110 mg O-2 m(-2) h(-1)) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O-2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92-995 mg chl a m(-2)) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hopanoids have generally been found in aerobic bacteria (i.e. methanotrophs, heterotrophs and cyanobacteria). Here we show that a variety of hopanoids (i.e. bacteriohopanetetrol, diplopterol, diploptene and a C-27 hopanoid ketone) occur in planctomycetes, including strictly anaerobic bacteria capable of anaerobic ammonium oxidation. Since planctomycetes have a widespread occurrence in Nature, this indicates that they may be an additional source for sedimentary hopanoids. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Australian freshwaters, Anabaena circinalis, Microcystis spp. and Cylindrospermopsis raciborskii are the dominant toxic cyanobacteria. Many of these Surface waters are used as drinking water resources. Therefore, the National Health and Medical Research Council of Australia set a guideline for MC-LR toxicity equivalents of 1.3 mug/l drinking, water. However, due to lack of adequate data, no guideline values for paralytic shellfish poisons (PSPs) (e.g. saxitoxins) or cylindrospermopsin (CYN) have been set. In this spot check. the concentration of microcystins (MCs), PSPs and CYN were determined by ADDA-ELISA, cPPA, HPLC-DAD and/or HPLC-MS/MS, respectively, in two water treatment plants in Queensland/Australia and compared to phytoplankton data collected by Queensland Health, Brisbane. Depending on the predominant cyanobacterial species in a bloom, concentrations of up to 8.0, 17.0 and 1.3 mug/l were found for MCs, PSPs and CYN, respectively. However, only traces (< 1.0 mug/l) of these toxins were detected in final water (final product of the drinking water treatment plant) and tap water (household sample). Despite the low concentrations of toxins detected in drinking water, a further reduction of cyanobacterial toxins is recommended to guarantee public safety. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant acetylene reduction and therefore N-2 fixation was observed for Lyngbya majuscula only during dark periods, which suggests that oxygenic photosynthesis and N-2 fixation are incompatible processes for this species. Results from a series of batch and continuous-flow-culture reactor studies showed that the specific growth rate and N-2 fixation rate of L, majuscula increased with phosphate (P-PO4) concentration up to a maximum value and thereafter remained constant. The P-PO4 concentrations corresponding to the maximum N-2 fixation and maximum growth rates were -0.27 and -0.18 muM respectively and these values are denoted as the saturation values for N-2 fixation and growth respectively. Regular monitoring studies in Moreton Bay, Queensland, show that concentrations Of P-PO4 generally exceed these saturation values over a large portion of the Bay and therefore, the growth of the bloom-forming L, majuscula is potentially maximised throughout much of the Bay by the elevated P-PO4 concentrations. Results from other studies suggest that the elevated P-PO4 concentrations in the Bay can be largely attributed to discharges from waste-water treatment plants (WWTPs), and thus it is proposed that the control of the growth of L. majuscula in Moreton Bay will require a significant reduction in the P load from the WWTP discharges. If the current strategy of N load reduction for these discharges is maintained in the absence of substantial P load reduction, it is hypothesised that the growth of L, majuscula and other diazotrophs in Moreton Bay will increase in the future.