993 resultados para Cyanobacteria


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diazotrophic cyanobacteria often form extensive summer blooms in the Baltic Sea driving their environment into phosphate limitation. One of the main species is the heterocystous cyanobacterium Nodularia spumigena. N. spumigena exhibits accelerated uptake of phosphate through the release of the exoenzyme alkaline phosphatase that also serves as an indicator of the hydrolysis of dissolved organic phosphorus (DOP). The present study investigated the utilization of DOP and its compounds (e.g. ATP) by N. spumigena during growth under varying CO2 concentrations, in order to estimate potential consequences of ocean acidification on the cell's supply with phosphorus. Cell growth, phosphorus pool fractions, and four DOP-compounds (ATP, DNA, RNA, and phospholipids) were determined in three set-ups with different CO2 concentrations (341, 399, and 508 µatm) during a 15-day batch experiment. The results showed rapid depletion of dissolved inorganic phosphorus (DIP) in all pCO2 treatments while DOP utilization increased with elevated pCO2, in parallel with the growth stimulation of N. spumigena. During the growth phase, DOP uptake was enhanced by a factor of 1.32 at 399 µatm and of 2.25 at 508 µatm compared to the lowest pCO2 concentration. Among the measured DOP compounds, none was found to accumulate preferentially during the incubation or in response to a specific pCO2 treatment. However, at the beginning 61.9 ± 4.3% of the DOP were not characterized but comprised the most highly utilized fraction. This is demonstrated by the decrement of this fraction to 27.4 ± 9.9% of total DOP during the growth phase, especially in response to the medium and high pCO2 treatment. Our results indicate a stimulated growth of diazotrophic cyanobacteria at increasing CO2 concentrations that is accompanied by increasing utilization of DOP as an alternative P source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microzooplankton (the 20 to 200 µm size class of zooplankton) is recognised as an important part of marine pelagic ecosystems. In terms of biomass and abundance pelagic ciliates are one of the important groups of organism in microzooplankton. However, their rates - grazing and growth - , feeding behaviour and prey preferences are poorly known and understood. A set of data was assembled in order to derive a better understanding of pelagic ciliates rates, in response to parameters such as prey concentration, prey type (size and species), temperature and their own size. With these objectives, literature was searched for laboratory experiments with information on one or more of these parameters effect studied. The criteria for selection and inclusion in the database included: (i) controlled laboratory experiment with a known ciliates feeding on a known prey; (ii) presence of ancillary information about experimental conditions, used organisms - cell volume, cell dimensions, and carbon content. Rates and ancillary information were measured in units that meet the experimenter need, creating a need to harmonize the data units after collection. In addition different units can link to different mechanisms (carbon to nutritive quality of the prey, volume to size limits). As a result, grazing rates are thus available as pg C/(ciliate*h), µm**3/(ciliate*h) and prey cell/(ciliate*h); clearance rate was calculated if not given and growth rate is expressed as the growth rate per day.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 ?atm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dataset is composed of 41 samples from 10 stations. The phytoplankton samples were collected by 5l Niskin bottles attached to the CTD system. The sampling depths were selected according to the CTD profile and the in situ fluorometer readings: surface, temperature, salinity and fluorescence gradients and 1 m above the bottom. At some stations phytoplankton net samples (20 µm mesh-size) were collected to assist species biodiversity examination. The samples (1l sea water) were preserved in 4% buffered to pH 8-8.2 with disodiumtetraborate formaldehyde solution and stored in plastic containers. On board at each station few live samples were qualitatively examined under microscope for preliminary analysis of taxonomic composition and dominant species. The taxon-specific phytoplankton abundance samples were concentrated down to 50 cm**3 by slow decantation after storage for 20 days in a cool and dark place. The species identification was done under light microscope OLIMPUS-BS41 connected to a video-interactive image analysis system at magnification of the ocular 10X and objective - 40X. A Sedgwick-Rafter camera (1ml) was used for counting. 400 specimen were counted for each sample, while rare and large species were checked in the whole sample (Manual of phytoplankton, 2005). Species identification was mainly after Carmelo T. (1997) and Fukuyo, Y. (2000). Total phytoplankton abundance was calculated as sum of taxon-specific abundances. Total phytoplankton biomass was calculated as sum of taxon-specific biomasses. The cell biovolume was determined based on morpho-metric measurement of phytoplankton units and the corresponding geometric shapes as described in detail in (Edier, 1979).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE III.