995 resultados para Cuyania and Chilenia terranes
Resumo:
The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with epsilon(Nd) between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm-Nd isochron yielded an age of 655 +/- 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)-Cambrian age of deposition. The Guarguaraz metasedimentary-ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordon del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
AbstractAs demonstrated during several recent geological conferences, there is still a large debate concerning the origins of the Mesozoic oceanic remnants on the Caribbean Plate. The geodynamic models describing the Mesozoic history of the Caribbean realm can be divided into two main categories based on the origin of the Caribbean Plate: 1) An in situ origin between the Americas; 2) A Pacific origin and an eastward transport relative to the Americas. The study of the ribbon-bedded radiolarite is a key in determining the origins of associated Mesozoic oceanic terranes and may help to achieve a general agreement regarding the basic principles on the evolution of the Caribbean Plate. The Early Jurassic to early Late Cretaceous Bermeja Complex of Puerto Rico, witch contains serpentinized peridotite, altered basalt, amphibolite, and chert (Mariquita Chert Formation), and the contemporaneous Santa Rosa Accretionary Complex, which crops out in several half-windows along the south shores of the Santa Elena Peninsula in northwestern Costa Rica, are two of these little-known and crucial ophiolitic mélanges. The Manzanillo and Matambú fore-arc Terranes of the Nicoya Peninsula in the northwestern Costa Rica, which contain Late Cretaceous to Early Paleogene radiolarian-bearing siliceous mudstones and cherts associated with arc-derived mafic to intermediate volcaniclastics, bring important information on the history of the western active margin of the Caribbean Plate. A systematic radiolarian study of these three regions is presented herein in three different articles.The radiolarian biochronology of the Mariquita Chert Formation of the Bermeja Complex presented in this work indicate an early Middle Jurassic to early Late Cretaceous (late Bajocian-early Callovian to middle Albian-middle Cenomanian) age for the Mariquita Chert Formation. The illustrated assemblages contain 150 species, of which 3 are new (Pantanellium karinae, Loopus bermejaense, and L. boricus), and belonging to 59 genera. A review of the previous radiolarian published works on this formation and the results of this study suggest that the Bermeja Complex ranges in age from Middle Jurassic to early Late Cretaceous (late Aalenian to middle Cenomanian) and also reveal a possible feature of the complex, which is the youngling of radiolarian cherts from north to south, evoking a polarity of accretion. On the basis of a currently exhaustive inventory of the ribbonbedded radiolaritic facies on the Caribbean Plate, a re-examination of the distribution of Middle Jurassic sediments associated with oceanic crust from the Caribbean realm, and a paleoceanographical argumentation on the water currents, we come to the conclusion that the radiolarite and associated Mesozoic oceanic terranes of the Caribbean Plate are of Pacific origin. The previous argument for a Pacific origin of the Bermeja Complex presented by Montgomery et al. (1994a), based on their radiolarian age and their estimation of the oldest Proto-Caribbean oceanic crust, is nowadays seriously questionable, owing to the recent progresses in radiolarian biostratigraphy and new discoveries on the age of the first oceanic crust spreading between the Americas. Furthermore, we interpret the radiolarian Parvicingulidae-rich assemblages in the low-latitude Caribbean context as potential indicators of upwelling or land nutrients inputs, instead of indicators of paleolatitudes,as firstly stated by Pessagno and Blome (1986). Eventually, a discussion on the origin of the cherts of the Mariquita Formation illustrated by Middle Jurassic to middle Cretaceous geodynamic models of the Pacific and Caribbean realms bring up the possibility that the rocks of the Bermeja Complex are remnants of two different oceans.The Santa Rosa Accretionary Complex contains various oceanic assemblages of alkaline basalt, radiolarite and polymictic breccias. The radiolarian biochronology (19 illustrated assemblages, 232 species belonging to 63 genera) presented in this work indicate an Early Jurassic to early Late Cretaceous (early Pliensbachian to earliest Turonian) age for the sediments associated with oceanic basalts or recovered from blocks in breccias or megabreccias from the Santa Rosa Accretionary Complex. This study brings to light the Early Jurassic age of a sequence of ribbon-bedded radiolarite, which was previously thought to be of Cretaceous age, intruded by alkaline basalts sills. The presence of Early Jurassic large reworked blocks of radiolarite in a polymictic megabreccia, firstly reported by De Wever et al. (1985) is confirmed. Therefore, the alkaline basalt associated with these radiolarites could be of Jurassic age. In the Carrizal tectonic window, Middle Jurassic radiolarian chert blocks and Early Cretaceous brick-red ribbon-bedded radiolarites overlying pillow basalts are interpreted as fragments of a Middle Jurassic oceanic basement accreted to an Early Cretaceous oceanic plate, in an intra-oceanic subduction context. Whereas, knobby radiolarites and black shale at Playa Carrizal are indicative of a shallower middle Cretaceous paleoenvironment. Other younger oceanic remnants documented the rapid approach of the site of sedimentation to a subduction trench during the late Early Cretaceous (AlbianCenomanian), maybe early Late Cretaceous (Turonian).In total, 60 species belonging to 34 genera were present in relatively well-preserved radiolarian faunas from volcaniclastics and associated pelagic and hemipelagic rocks of the Matambú and Manzanillo terranes, ranging in age from Late Cretaceous to Early Paleogene (middle Turonian-Santonian to late Thanetian-Ypresian). This study shows that radiolarians can provide significant biostratigraphic control in the Nicoya Peninsula where very similar lithologies of different ages are present. Two radiolarian samples directly date the Berrugate Formation for the first time (middle Turonian-Santonian and Coniacian-Santonian). These ages allow to determine a volcanic arc activity on the western edge of the future Caribbean Plate at least since the Santonian that could have lasted through the middle Turonian-early Campanian interval by stratigraphic superposition. Moreover on the basis of these radiolarian ages, the Loma Chumico Formation of Albian age, and the Berrugate Formation of middle Turonian-early Maastrichtian age, can now be clearly differentiated. Two samples from the Sabana Grande Formation give a Coniacian-Santonian age and a Coniacian-Campanian age and indicate that there is a stratigraphic gap of ~10 million years between this formation and the underlying Albian Loma Chumico Formation.RésuméComme cela a pu se vérifier à plusieurs reprises lors de conférences géologiques récentes, le débat sur l'origine des terrains océaniques mésozoïques de la Plaque Caraïbes est toujours d'actualité. Les modèles géodynamiques décrivant l'histoire de la région caraïbes peuvent être classés en deux catégories basées sur l'origine de la Plaque Caraïbes : 1) Une origine in situ entre les Amériques ; 2) Une origine Pacifique et un transport vers l'est, par rapport aux Amériques. L'étude des radiolarites rubanées est capitale pour la détermination de l'origine des terrains océaniques allochtones du Mésozoïque et peut être utile pour parvenir à un compromis général concernant les principes basiques de l'évolution de la Plaque Caraïbes. Le complexe de Bermeja à Porto Rico qui est constitué de péridotites serpentinisées, de basaltes altérés, d'amphibolites et de cherts (Formation des Cherts de Mariquita), et le Complexe d'Accrétion de Santa Rosa qui affleure dans plusieurs demi-fenêtres tectoniques au sud de la Péninsule de Santa Elena au nord-ouest du Costa Rica sont deux de ces mélanges ophiolitiques peu décrits et déterminants. Les terrains de fore-arc de Manzanillo et de Matambu dans la Péninsule de Nicoya au nord-ouest du Costa Rica qui sont composés de calcaires siliceux et de cherts riches en radiolaires associés à du matériel volcanique d'arc mafique à intermédiaire, apportent d'importantes informations sur l'histoire de la marge active occidentale de la Plaque Caraïbe. Une étude systématique des radiolaires de ces trois régions est présentée dans ce travail sous forme de trois articles.La biochronologie des radiolaires de la Formation des Cherts de Mariquita du Complexe d'Accrétion de Santa Rosa présentée dans ce travail indique un âge Jurassique Moyen inférieur à Crétacé Supérieur inférieur (Bajocien supérieur-Callovien inférieur à Albien moyen-Cénomanien moyen) pour la Formation des Cherts de Mariquita. Les assemblages illustrés contiennent 150 espèces, parmis lesquelles 3 sont nouvelles (Pantanellium karinae, Loopus bermejaense et L. boricus), et appartenant à 59 genres différents. Une révision des travaux publiés précédemment sur les radiolaires de cette formation, ainsi que les résultats de cette étude suggèrent que le Complexe de Bermeja a un âge allant du Jurassique moyen au Crétacé Supérieur inférieur (Aalénien supérieur à Cénomanien moyen) et révèle aussi une caractéristique éventuelle du complexe qui est le rajeunissement des radiolarites du nord au sud, évoquant une polarité d'accrétion. Sur la base d'un inventaire actuellement exhaustif du facies radiolaritique rubané sur la Plaque Caraïbes, d'un nouvel examen de la distribution globale des sédiments du Jurassique Moyen associés à de la croûte océanique et d'une argumentation paléocéanographique sur les courants, nous arrivons à la conclusion que les radiolarites et les unités tectoniques océaniques du Mésozoïque associées de la Plaque Caraïbes sont d'origine pacifique. L'argument antérieur pour une origine pacifique du Complexe de Bermeja présenté par Montgomery et al. (1994a), basé sur leur âge à radiolaire et leur estimation de l'âge de la plus vieille croûte océanique des Proto-Caraïbes, est sérieusement remis en question aujourd'hui, en raison des progrès récents de la biostratigraphie des radiolaires et des nouvelles découvertes concernant l'âge du début de l'océanisation entre les Amériques. En outre, dans le contexte de basses latitudes des Caraïbes, nous interprétons les assemblages à radiolaires riches en Parvicingulidae comme étant des indicateurs potentiels d'apports en nutriments des zones d'uppwelling ou des terres, plutôt que des indicateurs de paléolatitudes, comme exposer pour la première fois par Pessagno et Blome (1986). Finalement, une discussion sur l'origine des cherts de la Formation de Mariquita illustrée par des modèles géodynamiques du Jurassique Moyen au Crétacé moyen des régions pacifique et caraïbes, fait poindre la possibilité que les roches du Complexe de Bermeja proviennent de deux océans différents.Le Complexe d'Accrétion de Santa Rosa contient plusieurs assemblages océaniques différents de basaltes alcalins, radiolarites et brèches polymictes. La biochronologie des radiolaires (19 assemblages illustrés, 232 espèces appartenant à 63 genres) présentée dans ce second travail indique un âge Jurassique Inférieur à Crétacé Supérieur inférieur (Pliensbachien inférieur à Turonien initial) pour les sédiments associés aux basaltes océaniques ou provenant de blocs dans des brèches ou des mégabrèches du Complexe d'Accrétion de Santa Rosa. Cette étude met en évidence l'âge Jurassique Inférieur d'une séquence de radiolarites rubanées entrecoupée de sills de basaltes alcalins, dont l'âge estimé était précédemment le Crétacé.La présence de blocs plurimétriques de radiolarites d'âge Jurassique Inférieur remaniés dans une mégabrèche polymicte, dont la présence avait été signalée par De Wever et al. (1985), est confirmée. Par conséquent, les basaltes alcalins associés à ces radiolarites pourraient aussi être d'âge Jurassique. Dans la fenêtre tectonique de Carrizal, des blocs de radiolarites d'âge Jurassique Moyen et des radiolarites du Crétacé Inférieur recouvrant des basaltes en coussins sont interprétés comme des fragments d'une croûte océanique d'âge Jurassique Moyen accrétés à une plaque océanique d'âge Crétacé Inférieur, dans un contexte de subduction intra-océanique. Alors que dans la même zone, les radiolarites « noueuses » et les argiles noires associées sont interprétées comme des indicateurs d'un milieu peu profond au Crétacé. D'autres fragments océaniques plus jeunes documentent une approche rapide du lieu de sédimentation vers une fosse de subduction pendant le Crétacé Inférieur supérieur (Albien-Cénomanien), peut-être Crétacé Supérieur (Turonien).Au total, 60 espèces appartenant à 34 genres ont été déterminées à partir de faunes à radiolaires relativement bien préservées, extraites de roches volcanoclastiques et pélagiques à hémipélagiques associées, provenant des terrains de Matambu et Manzanillo et ayant des âges compris entre le Crétacé Supérieur et le Paléogène Inférieur (Turonien moyen-Santonien à Thanétien supérieur-Yprésien). Cette étude montre que les radiolaires peuvent fournir un contrôle stratigraphique significatif dans la Péninsule de Nicoya, où des lithologies similaires, mais d'âges différents sont présentes. Deux échantillons à radiolaires permettent de dater la Formation de Berrugate pour la première fois (Turonien moyen-Santonien et Coniacien-Santonien). Ces âges permettent d'établir une activité volcanique d'arc le long de la marge occidentale de la futur Plaque Caraïbes au moins depuis le Santonien et qui pourrait avoir durée jusqu'au Turonien moyen-Campanien inférieur. De plus, sur la base de ces âges à radiolaires, la Formation de Loma Chumico d'âge Albien, et la Formation de Berrugate d'âge Turonien moyen-Maastrichtien inférieur, peuvent maintenant être différenciées. Deux échantillons de la Formation de Sabana Grande donnent des âges Coniacien-Santonien et Coniacien-Campanien et indiquent qu'il existe une lacune stratigraphique d'environ 10 millions d'années entre cette formation et la Formation de Loma Chumico sous-jacente d'âge Albien.
Resumo:
The Turkish part of the Tethyan realm is represented by a series of terranes juxtaposed through Alpine convergent movements and separated by complex suture zones. Different terranes can be defined and characterized by their dominant geological background. The Pontides domain represents a segment of the former active margin of Eurasia, where back-arc basins opened in the Triassic and separated the Sakarya terrane from neighbouring regions. Sakarya was re-accreted to Laurasia through the Balkanic mid-Cretaceous orogenic event that also affected the Rhodope and Strandja zones. The whole region from the Balkans to the Caucasus was then affected by a reversal of subduction and creation of a Late Cretaceous arc before collision with the Anatolian domain in the Eocene. If the Anatolian terrane underwent an evolution similar to Sakarya during the Late Paleozoic and Early Triassic times, both terranes had a diverging history during and after the Eo-Cimmerian collision. North of Sakarya, the Küre back-arc was closed during the Jurassic, whereas north of the Anatolian domain, the back-arc type oceans did not close before the Late Cretaceous. During the Cretaceous, both domains were affected by ophiolite obduction, but in very different ways: north directed diachronous Middle to Late Cretaceous mélange obduction on the Jurassic Sakarya passive margin; Senonian synchronous southward obduction on the Triassic passive margin of Anatolia. From this, it appears that the Izmir-Ankara suture, currently separating both terranes, is composite, and that the passive margin of Sakarya is not the conjugate margin of Anatolia. To the south, the Cimmerian Taurus domain together with the Beydağları domain (part of the larger Greater Apulian terrane), were detached from north Gondwana in the Permian during the opening of the Neotethys (East-Mediterranean basin). The drifting Cimmerian blocks entered into a soft collision with the Anatolian and related terranes in the Eo-Cimmerian orogenic phase (Late Triassic), thus suturing the Paleotethys. At that time, the Taurus plate developed foreland-type basins, filled with flysch-molasse deposits that locally overstepped the lower plate Taurus terrane and were deposited in the opening Neotethys to the south. These olistostromal deposits are characterized by pelagic Carboniferous and Permian material from the Paleotethys suture zone found in the Mersin mélange. The latter, as well as the Antalya and Mamonia domains are represented by a series of exotic units now found south of the main Taurus range. Part of the Mersin exotic material was clearly derived from the former north Anatolian passive margin (Huğlu-type series) and re-displaced during the Paleogene. This led us to propose a plate tectonic model where the Anatolian ophiolitic front is linked up with the Samail/Baër-Bassit obduction front found along the Arabian margin. The obduction front was indented by the Anatolian promontory whose eastern end was partially subducted. Continued slab roll-back of the Neotethys allowed Anatolian exotics to continue their course southwestward until their emplacement along the Taurus southern margin (Mersin) and up to the Beydağları promontory (Antaya-Mamonia) in the latest Cretaceous-Paleocene. The supra-subduction ocean opening at the back of the obduction front (Troodos-type Ocean) was finally closed by Eocene north-south shortening between Africa and Eurasia. This brought close to each other Cretaceous ophiolites derived from the north of Anatolia and those obducted on the Arabian promontory. The latter were sealed by a Maastrichtian platform, and locally never affected by Alpine tectonism, whereas those located on the eastern Anatolian plate are strongly deformed and metamorphosed, and affected by Eocene arc magmatism. These observations help to reconstruct the larger frame of the central Tethyan realm geodynamic evolution.
Resumo:
Abstract The Northwestern edge of the modern Caribbean Plate, located in central Middle America (S-Guatemala to N-Costa Rica), is characterized by a puzzle of oceanic and continental terranes that belonged originally to the Pacific façade of North America. South of the Motagua Fault Zone, the actual northern strike slip boundary of the Caribbean Plate, three continental slivers (Copán, Chortis s. str. and Patuca) are sandwiched between two complex suture zones that contain HP/LT mafic and ultramafic oceanic rocks: The Motagua Mélanges to the North, extensively studied in the last ten years and the' newly defined Mesquito Composite Oceanic Terrane (MCOT) to the South. No modem geological data were available for the oceanic terrane located in the southern part of the so called continental "Chortis Block". Classically, the southern limit of this block with the Caribbean Large Igneous Province (CLIP) was placed at a hypothetical fault line connecting the main E-W fault in the Santa Elena Peninsula (N-Costa Rica) with the Hess Escarpment. However, our study in eastern Nicaragua and northwestern Costa Rica evidences an extensive assemblage of oceanic upper mantle and crustal rocks outcropping between the Chortis/Patuca continental blocks and the CLIP. They comprise collided and accreted exotic terranes of Pacific origin recording a polyphased tectonic history. We distinguish: 1- The MCOT that comprises a Late Triassic to Early Cretaceous puzzle of oceanic crust and arc-derived rocks set in a serpentinite matrix, and 2- The Manzanillo and Nicoya Terranes that are made of Cretaceous plateau-like rocks associated with oceanic sediments older than the CLIP. This study has been focused on the rocks of the MCOT. The MCOT comprises the southern half of the former "Chortis Block" and is defined by 4 comer localities characterized by ultramafic and mafic oceanic rocks of Late Triassic, Jurassic and Early Cretaceous age: 1- The Siuna Serpentinite Mélange (NE-Nicaragua), 2- The El Castillo Mélange (Nicaragua/Costa Rica border), 3- DSDP Legs 67 and 84 (Guatemala fore-arc basin), and 4- The Santa Elena Peridiotite (NW-Costa Rica). The Siuna Serpentinite Mélange (SSM) is a HP/LT subduction zone mélange set in a serpentinite matrix that contains oceanic crust and arc-related greenschist to blueschist/eclogite facies metamafic and metasedimentary blocks. Middle Jurassic (Bajocian-Bathonian) radiolarites are found in original sedimentary contact with arc-derived greenstones. Late Jurassic black detrital chert possibly formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma. The El Castillo Mélange (ECM) is composed of serpentinite matrix with OIB metabasalts and Late Triassic (Rhaetian) red and green radiolarite blocks. Recent studies of the DSDP Legs 67/84 show that the Guatemala/Nicaragua fore-arc basin is composed of a pile of ultramafic, mafic (OIB-like) and arc related rocks with ages ranging from Late Triassic to Campanian. Finally, the Santa Elena peridiotites that mark the limit of the MCOT with the Manzanillo/Nicoya Terranes and correspond to an association of ultramafic rocks that comprise peridiotites, dunites and chromites of abyssal and fore-arc origin. The SSM is the result of a collision between a Middle Jurassic island arc and the Patuca Terrane, a fragment of the Western N-American active continental margin. The Siuna Mélange (SSM) and the South Montagna Mélange share common characteristics with the Pacific N-American suture zone (E-Franciscan and Vizcaino mélanges), in particular, the Mesozoic ages of HP/LT metamorphic and the arc-derived blocks. For us, these mélanges imply an originally continuous, but slightly diachronous suture that affected the entire W-American active margin. It may imply the arrival and collision of an exotic intraoceanic arc (Guerrero-Phoenix) related to the origin of the Pacific Plate that initiated as a back arc basin of this arc. The present disposition of the fragments of this suture zone is the result of a northward shift of the active left-lateral strike slip motion between the N-American and the Caribbean Plates. Résumé Le coin nord-ouest de la Plaque Caraïbe moderne se trouve en Amérique Centrale, entre le sud du Guatemala et le nord du Costa Rica. Cette région est composée d'un puzzle de terrains océaniques et continentaux dont les origines se situent sur la façade pacifique de l'Amérique du Nord. Au sud de la faille de Motagua, la limite septentrionale actuelle, décrochante, de la Plaque Caraïbe, se trouvent 3 copeaux continentaux (Copàn, Chortis s. str. et Patuca) coincés entre deux zones de suture complexes à roches mafiques et ultramafiques qui ont subi un métamorphisme de haute pression/basse température (HP/LT). Il s'agit des Mélanges de Motagua au nord, largement étudiés ces dernières années, et du Mesquito Composite Oceanic Terrane (MCOT), récemment défini par nous, au sud. En vue de l'absence de données géologiques modernes concernant les terrains océaniques qui se trouvent dans la partie sud du "Chortis Block" considérée comme continentale, nous avons dédié cette étude à cette région. Classiquement, la limite méridionale entre le "Chortis Block" et la "Caribbean Large Igneous Province" (CLIP) a été associée à une faille hypothétique reliant la faille E-W de Santa Elena (nord du Costa Rica) à l'Escarpement de Hess. Notre étude au Nicaragua oriental et au Costa Rica nord-occidental a révélé l'existence de larges terrains composés d'assemblages de roches mantéliques et océaniques qui se placent entre les blocs continentaux Chortis/Patuca et le CLIP. Ces assemblages révèlent des terrains collisionnés et accrétés d'origine pacifique enregistrant une histoire tectonique polyphasée. Nous distinguons: 1- Le MCOT, un puzzle de roches océaniques d'arc d'âge Triassique supérieur au Crétacée inférieur, 2- Les terrains de Manzanillo et de Nicoya, des morceaux de plateaux océaniques associés à des sédiments océaniques plus âgés que le CLIP. Cette étude se focalisera sur les roches du MCOT. Le MCOT occupe la moitié sud de l'ancien "Chortis Block" et peut se définir par 4 localités de référence qui montrent des roches mafiques et ultramafiques océaniques d'âges compris entre le Trias supérieur et le Crétacée inférieur. 1- Le Siuna Serpentinite Mélange (NE-Nicaragua), 2- Le El Castillo Mélange (Nicaragua/Costa Rica border), 3- Le DSDP Legs 67/84 (Guatemala fore-arc basin) et 4- La Santa Elena Peridiotite (nord-ouest du Costa Rica). Le Siuna Serpentinite Mélange (SSM) est un mélange de subduction HP/BT dans une matrice de serpentinite. On y trouve des éléments de croûte océanique et d'arc insulaire en faciès de schistes verts et schistes bleus. Des radiolarites du Jurassique moyen se trouvent en contact sédimentaire sur des roches vertes d'arc. En revanche, des cherts noirs détritiques datent du Jurassique supérieur et sont probablement issus d'un bassin marginal (fore-arc ?) peu avant leur subduction, car un âge 40Ar/39Ar de refroidissement des phengites date l'exhumation des roches de haute pression à 139 Ma. Le Mélange d'El Castillo (ECM) est constitué d'une matrice serpentinitique et contient des blocs de metabasaltes OIB et des blocs de radiolarites du Trias terminal. Des études récentes ont repris les roches forées lors des DSDP Legs 67 et 84 et montrent que le soubassement du bassin d'avant-arc du Guatemala-Nicaragua est composé de roches ultramafiques et mafiques (OIB et arc), dont les âges isotopiques vont du Trias au Crétacé supérieur. Finalement, les péridiotites de Santa Elena forment la limite sud du MCOT par rapport aux terrains de Manzanillo et Nicoya. Elles contiennent des serpentinites et localement des dunites et chromites à affinité abyssale et de fore-arc. Le SSM témoigne d'une collision entre un arc insulaire d'âge Jurassique moyen et le Patuca Terrane, un fragment de la marge active nord-américaine. Le SSM et le South Motagua Mélange ont des caractéristiques en commun avec les zones de suture de la façade pacifique de l'Amérique du nord (E-Franciscan et Vizcaino mélanges), notamment les âges Mésozoïques du métamorphisme HP/BT et les blocs de roches d'arc. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine, mais légèrement diachrone. Cette suture implique l'arrivée et la collision d'un arc intraocéanique exotique (Guerrero-Phoenix) qui est à l'origine de la Plaque Pacifique qui s'ouvrait en back arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe. K. Flores, 2009 Mesozoic oceanic terranes of southern central America Résumé Grand Public La présente thèse est le résultat de travaux de terrain effectués de 2005 à 2008 au nord-est et au sud du Nicaragua et au nord du Costa Rica, en Amérique Centrale, des analyses pétrologiques et géochimiques en laboratoire ainsi que de la modélisation de l'évolution géodynamique. La région étudiée se situe en bordure nord - ouest de la Plaque Caraïbe moderne. Dans la majorité des publications récentes cette région est représentée comme un vaste bloc continental (le "Bloc Chortis") qui serait limité, (i) au nord, par la faille décrochante de Motagua, la limite actuelle entre la Plaque Nord-Américaine et la Plaque Caraïbe, et (ii) au sud, par une suture hypothétique qui se trouverait aux confins entre le Nicaragua et le Costa Rica. La région du Costa Rica a été considérée presque entièrement comme une partie du Plateau Caraïbe ("Caribbean Large Igneous Province" (CLIP)). L'étude détaillée des affleurements nous a permis de mettre en évidence : - Au nord-est du Nicaragua (Siuna) : Des roches océaniques datées du Jurassique moyen, grâce aux faunes à radiolaires qui ont été extraites des radiolarites rouges. Ces roches ont subi un métamorphisme de haute pression typique des zones de collision. L'étude radio-isotopique Ar/Ar a permis de dater la collision du Crétacé basal (139 Ma). - Au sud du Nicaragua : Des roches océaniques d'âge Trias terminal (200 millions d'années), également datées à l'aide de faunes à radiolaires. Il s'agit actuellement des roches océaniques les plus anciennes connues de l'Amérique Centrale. - L'étude géochimique et les âges des fossiles démontrent que le tiers septentrional du Costa Rica possède un soubassement construit d'au moins deux terrains (Nicoya et Manzanillo), qui ont des caractéristiques de Plateau océanique (Nicoya) et d'arc volcanique du Crétacé moyen (Manzanillo). Ces deux terrains sont plus anciens que le CLIP. En conclusion, nous constatons que la région étudiée est constituée d'un puzzle de 3 blocs continentaux et d'un vaste terrain océanique composite que nous appelons Mesquito Composite Oceanic Terrane (MCOT). En plus, nous définissons les terrains de Nicoya et de Manzanillo comme plus âgés et distincts du CLIP. Le MCOT est caractérisé par la présence de roches du manteau supérieur (les serpentinites) et de la croûte océanique, ainsi que des morceaux d'arcs, d'âge allant du Trias supérieur au Crétacé. Ce terrain est comparable à d'autres zones de suture de la façade pacifique de l'Amérique du nord, notamment en ce qui concerne les âges Mésozoïques, le métamorphisme de haute pression et l'association de roches mantéliques et crustales océaniques. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine. Cette suture implique l'arrivée et la collision d'un arc infra-océanique exotique qui serait à l'origine de la Plaque Pacifique qui se serait ouverte en bassin d'arrière arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe.
Resumo:
One of the key for the understanding of an orogenic belt is the characterization of the terranes involved and the identification of the suture(s) separating crustal blocks: these are essential information for large-scale paleo-reconstructions. In addition, the structural relationships between the terranes involved in the collisional processes and the eventual UHP relicts may provide first order inputs to exhumation models of subducted rocks. The structure of the Rhodope Massif (northern Greece and southern Bulgaria) results from the stacking of high-grade nappes during a continental collision, which age is comprised between Latest-Jurassic and Early-Cenozoic. UHP and HP relicts, associated with oceanic and ultramafic material, suggest the presence of a dismembered suture zone within the massif. The location of this suture remains unclear; furthermore, up to now, the UHP and eclogitic localities represent isolated spots and no synthesis on their structural position within the massif has been proposed. The first aim of this work is to define the relationships between HP-UHP relicts, crustal blocks, shear zones and amphibolitic material. To achieve this objective, we characterized the accreted blocks in terms of protoliths ages of the orthogneisses mainly along two cross sections on the Greek part of the belt. Geochemical affinities of meta-igneous rocks served as a complementary tool for terrane characterization and geodynamic interpretation. Single-zircon Pb-Pb evaporation and zircon U-Pb SHRIMP dating of orthogneiss protoliths define two groups of intrusion-ages: Permo-Carboniferous and Late Jurassic-Early Cretaceous. Structurally, these two groups correspond to distinct units: the Late Jurassic gneissic complex overthrusts the one bearing the Permo-Carboniferous orthogneisses. Mylonites, eclogites, amphibolites of oceanic affinities, and UHP micaschists, mark a “melange” zone, intensively sheared towards the SW, which separates the two units. Thus, we interpret them as two distinct terranes, the Rhodope and Thracia terranes, separated by the Nestos suture. The correlation of our findings in northern Greece to the Bulgarian part of the Massif suggests a northern rooting of the Nestos Suture. This configuration results of the closure of a marginal oceanic basin of the Tethys system by a north-directed subduction. This interpretation is supported by the geochemical affinities of the orthogneisses: the Late-Jurassic igneous rocks formed by subduction-related magmatism, pprobably the same north-directed subduction that gave rise to the UHP metamorphism of the metasediments of the “melange” zone. It is noteworthy that the UHP-HP relicts seem to be restricted to the contact between the two terranes suggesting that the UHP relicts are exhumed only within the suture zone. Furthermore, the singularity of the suture suggests that the Late-Jurassic subduction explains the occurrence of UHP and eclogite relicts in the Central Rhodope despite the large age range previously attributed the UHP and/or HP stage.
Resumo:
An integrated array of analytical methods -including clay mineralogy, vitrinite reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track analysis- was employed to constrain the thermal and thermochronological evolution of selected portions of the Pontides of northern Turkey. (1) A multimethod investigation was applied for the first time to characterise the thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion complex cropping out throughout the Sakarya Zone. The results indicate two different thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly the result of different degree of involvement of the units in the complex dynamic processes of the accretionary wedge. Contrary to common belief, the results of this study indicate that the entire Karakaya Complex suffered metamorphic conditions. Moreover, a good degree of correlation among the results of these methods demonstrate that Raman spectroscopy on carbonaceous material can be applied successfully to temperature ranges of 200-330°C, thus extending the application of this method from higher grade metamorphic contexts to lower grade metamorphic conditions. (2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones in order to constrain the exhumation history and timing of amalgamation of these two exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages reflect the onset and development of the northern Aegean extension. The consistency of AFT ages, both north and south of the tectonic contact between the İstanbul and Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. (3) Fission-track analysis was also applied to rock samples from the Marmara region, in an attempt to constrain the inception and development of the North Anatolian Fault system in the region. The results agree with those from the central Pontides. The youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western portion of the Marmara Sea region and reflect the onset and development of northern Aegean extension. Fission-track data from the eastern Marmara Sea region indicate rapid Early Eocene exhumation induced by the development of the İzmir-Ankara orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a segment of the North Anatolian Fault system- indicate the presence of a tectonic discontinuity active by Late Oligocene time, i.e. well before the arrival of the North Anatolian Fault system in the area. The integration of thermochronologic data with preexisting structural data point to the existence of a system of major E-W-trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, inception of the present-day North Anatolian Fault system in the Marmara region occurred by reactivation of these older tectonic structures.
Resumo:
This is the first detailed study of the westernmost portion of the outcrop belt, which extends along the western flank of the Talkeetna Mountains and includes thick, well-exposed outcrops along Willow Creek in the eastern Susitna basin. New sedimentologic, compositional, and geochronologic data were obtained from stratigraphic sections within Arkose Ridge Formation strata at Willow Creek. This data combined with new geologic mapping and geochronologic data from Willow Bench and Kashwitna River Bluff (north of Willow Creek), and from the Government Peak area (east of Willow Creek), help constrain depositional processes and source terranes that provided detritus to the westernmost Arkose Ridge Formation strata.
Resumo:
Three distinct, spatially separated crustal terranes have been recognised in the Shackleton Range, East Antarctica: the Southern, Eastern and Northern Terranes. Mafic gneisses from the Southern Terrane provide geochemical evidence for a within-plate, probably back-arc origin of their protoliths. A plume-distal ridge origin in an incipient ocean basin is the favoured interpretation for the emplacement site of these rocks at c. 1850 Ma, which, together with a few ocean island basalts, were subsequently incorporated into an accretionary continental arc/supra-subduction zone tectonic setting. Magmatic underplating resulted in partial melting of the lower crust, which caused high-temperature granulite-facies metamorphism in the Southern Terrane at c. 1710-1680 Ma. Mafic and felsic gneisses there are characterised by isotopically depleted, positive Nd and Hf initials and model ages between 2100 and 2000 Ma. They may be explained as juvenile additions to the crust towards the end of the Palaeoproterozoic. These juvenile rocks occur in a narrow, c. 150 km long E-W trending belt, inferred to trace a suture that is associated with a large Palaeoproterozoic accretionary orogenic system. The Southern Terrane contains many features that are similar to the Australo-Antarctic Mawson Continent and may be its furthermost extension into East Antarctica. The Eastern Terrane is characterised by metagranitoids that formed in a continental volcanic arc setting during a late Mesoproterozoic orogeny at c. 1060 Ma. Subsequently, the rocks experienced high-temperature metamorphism during Pan-African collisional tectonics at 600 Ma. Isotopically depleted zircon grains yielded Hf model ages of 1600-1400 Ma, which are identical to Nd model ages obtained from juvenile metagranitoids. Most likely, these rocks trace the suture related to the amalgamation of the Indo-Antarctic and West Gondwana continental blocks at ~600 Ma. The Eastern Terrane is interpreted as the southernmost extension of the Pan-African Mozambique/Maud Belt in East Antarctica and, based on Hf isotope data, may also represent a link to the Ellsworth-Whitmore Mountains block in West Antarctica and the Namaqua-Natal Province of southern Africa. Geochemical evidence indicates that the majority of the protoliths of the mafic gneisses in the Northern Terrane formed as oceanic island basalts in a within-plate setting. Subsequently the rocks were incorporated into a subduction zone environment and, finally, accreted to a continental margin during Pan-African collisional tectonics. Felsic gneisses there provide evidence for a within-plate and volcanic arc/collisional origin. Emplacement of granitoids occurred at c. 530 Ma and high-temperature, high-pressure metamorphism took place at 510-500 Ma. Enriched Hf and Nd initials and Palaeoproterozoic model ages for most samples indicate that no juvenile material was added to the crust of the Northern Terrane during the Pan-African Orogeny but recycling of older crust or mixing of crustal components of different age must have occurred. Isotopically depleted mafic gneisses, which are spatially associated with eclogite-facies pyroxenites, yielded late Mesoproterozoic Nd model ages. These rocks occur in a narrow, at least 100 km long, E-W trending belt that separates alkaline ocean island metabasalts and within-plate metagranitoids from volcanic arc metabasalts and volcanic arc/syn-collisional metagranitoids in the Northern Terrane. This belt is interpreted to trace the late Neoproterozoic/early Cambrian Pan-African collisional suture between the Australo-Antarctic and the combined Indo-Antarctic/West Gondwana continental blocks that formed during the final amalgamation of Gondwana.
Resumo:
The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.
Resumo:
Metasediments in the three early Palaeozoic Ross orogenic terranes in northern Victoria Land and Oates Land (Antarctica) are geochemically classified as immature litharenites to wackes and moderately mature shales. Highly mature lithotypes with Chemical Index of Weathering values of >=95 are typically absent. Geochemical and Rb-Sr and Sm-Nd isotope results indicate that the turbiditic metasediments of the Cambro-Ordovician Robertson Bay Group in the eastern Robertson Bay Terrane represent a very homogeneous series lacking significant compositional variations. Major variations are only found in chemical parameters which reflect differences in degree of chemical weathering of their protoliths and in mechanical sorting of the detritus. Geochemical data, 87Sr/ 86Sr t=490 Ma ratios of 0.7120 - 0.7174, epsilonNd, t=490 Ma values of -7.6 to -10.3 and single-stage Nd-model ages of 1.7 - 1.9 Ga are indicative of an origin from a chemically evolved crustal source of on average late Palaeoproterozoic formation age. There is no evidence for significant sedimentary infill from primitive "ophiolitic" sources. Metasediments of the Middle Cambrian Molar Formation (Bowers Terrane) are compositionally strongly heterogeneous. Their major and trace element data and Sm-Nd isotope data (epsilonNd, t=500 Ma values of -14.3 to -1.2 and single-stage Nd-model ages of 1.7 - 2.1 Ga) can be explained by mixing of sedimentary input from an evolved crustal source of at least early Palaeoproterozoic formation age and from a primitive basaltic source. The chemical heterogeneity of metasediments from the Wilson Terrane is largely inherited from compositional variations of their precursor rocks as indicated by the Ni vs TiO2 diagram. Single-stage Nd-model ages of 1.6 -2.2 Ga for samples from more western inboard areas of the Wilson Terrane (epsilonNd, t=510 Ma -7.0 to -14.3) indicate a relatively high proportion of material derived from a crustal source with on average early Palaeoproterozoic formation age. Metasedimentary series in an eastern, more outboard position (epsilonNd, t=510 Ma -5.4 to -10.0; single-stage Nd model ages 1.4 - 1.9) on the contrary document stronger influence of a more primitive source with younger formation ages. The chemical and isotopic characteristics of metasediments from the Bowers and Wilson terranes can be explained by variable contributions from two contrasting sources: a cratonic continental crust similar to the Antarctic Shield exposed in Georg V Land and Terre Adélie some hundred kilometers west of the study area and a primitive basaltic source probably represented by the Cambrian island-arc of the Bowers Terrane. While the data for metasediments of the Robertson Bay Terrane are also compatible with an origin from an Antarctic-Shield-type source, there is no direct evidence from their geochemistry or isotope geochemistry for an island-arc component in these series.
Resumo:
We present new U-Pb zircon (SHRIMP) data on rocks from Mt Newton and Cumpston Massif in the southern Prince Charles Mountains. Our data demonstrate that Mt Newton was affected by a newly proposed Palaeoproterozoic "Newton" Orogeny at c. 2100-2200 Ma. Sedimentation, felsic volcanism (c. 2200 Ma), metamorphism and folding, followed by granite intrusion (c. 2100 Ma), suggest development of a trough or aulacogene in the area during the early Palaeoproterozoic. An orthogneiss from Cumpston Massif yielded an age of c. 3180 Ma for granitic protolith emplacement, which is in good agreement with many U-Pb zircon ages from similar rocks in the southern Mawson Escarpment. A syn- to late-tectonic muscovite-bearing pegmatite from Cumpston Massif yielded a c. 2500 Ma date of emplacement, which indicates early Palaeoproterozoic activity in this block, probably in response to a tectono-magmatic episode in the Lambert Terrane bordering the Ruker Terrane in the northeast. The correlation of tectono-magmatic events in both the Ruker and Lambert terranes of the southern Prince Charles Mountains provides evidence for their common evolution during the Proterozoic.
Resumo:
Abstract: The Altaids consist in a huge accretionary-type belt extending from Siberia through Mon-golia, northern China, Kyrgyzstan and Kazakhstan. They were formed from the Vendian through the Jurassic by the accretion of numerous displaced and exotic terranes (e.g. island arc, ribbon microcontinent, seamount, basaltic plateau, back-arc basin). The number, nature and origin of the terranes differ according to the palaeotectonic models of the different authors. Thanks to a geo- dynamic study (i.e. definition of tectonic settings and elaboration of geodynamic scenarios) and plate tectonics modelling, this work aims to present an alternative model explaining the Palaeozoic palaeotectonic evolution of the Altaids. Based on a large set of compiled geological data related to palaeogeography and geodyna¬mic (e.g. sedimentology, stratigraphy, palaeobiogeography, palaeomagnetism, magmatism, me- tamorphism, tectonic...), a partly new classification of the terranes and sutures implicated in the formation of the Altaids is proposed. In the aim to elaborate plate tectonics reconstructions, it is necessary to fragment the present arrangement of continents into consistent geological units. To avoid confusion with existing terminology (e.g. tectonic units, tectono-stratigraphic units, micro- continents, terranes, blocks...), the new concept of "Geodynamic Units (GDU)" was introduced. A terrane may be formed by a set of GDUs. It consists of a continental and/or oceanic fragment which has its own kinematic and geodynamic evolution for a given period. With the same ap-proach, the life span and type of the disappeared oceans is inferred thanks to the study of the mate-rial contained in suture zones. The interpretation of the tectonic settings within the GDUs comple-ted by the restoration of oceans leads to the elaboration of geodynamic scenarios. Since the Wilson cycle was presented in 1967, numerous works demonstrated that the continental growth is more complex and results from diverse geodynamic scenarios. The identification of these scenarios and their exploitation enable to elaborate plate tectonics models. The models are self-constraining (i.e. space and time constraints) and contest or confirm in turn the geodynamic scenarios which were initially proposed. The Altaids can be divided into three domains: (1) the Peri-Siberian, (2) the Kazakhstan, and (3) the Tarim-North China domains. The Peri-Siberian Domain consists of displaced (i.e. Sayan Terrane Tuva-Mongolian, Lake-Khamsara Terrane) and exotic terranes (i.e. Altai-Mongolian and Khangai-Argunsky Terrane) accreted to Siberia from the Vendian through the Ordovician. Fol-lowing the accretion of these terranes, the newly formed Siberia active margin remained active un-til its part collision with the Kazakhstan Superterrane in the Carboniferous. The eastern part of the active margin (i.e. East Mongolia) continued to act until the Permian when the North-China Tarim Superterrane collided with it. The geodynamic evolution of the eastern part of the Peri-Siberian Domain (i.e. Eastern Mongolia and Siberia) is complicated by the opening of the Mongol-Okhotsk Ocean in the Silurian. The Kazakhstan Domain is composed of several continental terranes of East Gondwana origin amalgamated together during the Ordovician-Silurian time. After these different orogenic events, the Kazakhstan Superterrane evolved as a single superterrane until its collision with a Tarim-North China related-terrane (i.e. Tianshan-Hanshan Terrane) and Siberian Continent during the Devonian. This new organisation of the continents imply a continued active margin from Siberia, to North China through the Kazakhstan Superterrane and the closure of the Junggar- Balkash Ocean which implied the oroclinal bending of the Kazakhstan Superterrane during the entire Carboniferous. The formation history of the Tarim-North China Domain is less complex. The Cambrian northern passive margin became active in the Ordovician. In the Silurian, the South Tianshan back-arc Ocean was open and led to the formation of the Tianshan-Hanshan Terrane which collided with the Kazakhstan Superterrane during the Devonian. The collision between Siberia and the eastern part of the Tarim-North China continents (i.e. Inner Mongolia), implied by the closure of the Solonker Ocean, took place in the Permian. Since this time, the major part of the Altaids was formed, the Mongol-Okhotsk Ocean only was still open and closed during the Jurassic. Résumé: La chaîne des Altaïdes est une importante chaîne d'accrétion qui s'étend en Sibérie, Mon-golie, Chine du Nord, Kirghizstan et Kazakhstan. Elle s'est formée durant la période du Vendian au Jurassique par l'accrétion de nombreux terranes déplacés ou exotiques (par exemple arc océa-nique, microcontinent, guyot, plateau basaltique, basin d'arrière-arc...). Le nombre, la nature ou encore l'origine diffèrent selon les modèles paléo-tectoniques proposés par les différents auteurs. Grâce à une étude géodynamique (c'est-à-dire définition des environnements tectoniques et éla-boration de scénarios géodynamiques) et à la modélisation de la tectonique des plaques, ce travail propose un modèle alternatif expliquant l'évolution paléo-tectonique des Altaïdes. Basé sur une large compilation de données géologiques pertinentes en termes de paléo-géographie et de géodynamique (par exemple sédimentologie, stratigraphie, paléo-biogéographie, paléomagnétisme, magmatisme, métamorphisme, tectonique...), une nouvelle classification des terranes et des sutures impliqués dans la formation des Altaïdes est proposée. Dans le but d'élabo¬rer des reconstructions de plaques tectoniques, il est nécessaire de fragmenter l'arrangement actuel des continents en unités tectoniques cohérentes. Afin d'éviter les confusions avec la terminolo¬gie existante (par exemple unité tectonique, unité tectono-stratigraphique, microcontinent, block, terrane...), le nouveau concept d' "Unité Géodynamique (UGD)" a été introduit. Un terrane est formé d'une ou plusieurs UGD et représente un fragment océanique ou continental défini pas sa propre cinétique et évolution géodynamique pour une période donnée. Parallèlement, la durée de vie et le type des océans disparus (c'est-à-dire principal ou secondaire) est déduite grâce à l'étude du matériel contenu dans les zones de sutures. L'interprétation des environnements tectoniques des UGD associés à la restauration des océans mène à l'élaboration de scénarios géodynamiques. Depuis que le Cycle de Wilson a été présenté en 1967, de nombreux travaux ont démontré que la croissance continentale peut résulter de divers scénarios géodynamiques. L'identification et l'ex-ploitation de ces scénarios permet finalement l'élaboration de modèles de tectonique des plaques. Les modèles sont auto-contraignants (c'est-à-dire contraintes spatiales et temporelles) et peuvent soit contester ou confirmer les scénarios géodynamiques initialement proposés. Les Altaïdes peuvent être divisées en trois domaines : (1) le Domaine Péri-Sibérien, (2) le Domaine Kazakh, et (3) le Domaine Tarim-Nord Chinois. Le Domaine Péri-Sibérien est composé de terranes déplacés (c'est-à-dire Terrane du Sayan, Tuva-Mongol et Lake-Khamsara) et exotiques (c'est-à-dire Terrane Altai-Mongol et Khangai-Argunsky) qui ont été accrétés au craton Sibérien durant la période du Vendien à l'Ordovicien. Suite à l'accrétion de ces terranes, la marge sud-est de la Sibérie nouvellement formée reste active jusqu'à sa collision partielle avec le Superterrane Ka-zakh au Carbonifère. La partie est de la marge active (c'est-à-dire Mongolie de l'est) continue son activité jusqu'au Permien lors de sa collision avec le Superterrane Tarim-Nord Chinois. L'évolu¬tion géodynamique de la partie est du Domaine Sibérien est compliquée par l'ouverture Silurienne de l'Océan Mongol-Okhotsk qui disparaîtra seulement au Jurassique. Le Domaine Kazakh est composé de plusieurs terranes d'origine est-Gondwanienne accrétés les uns avec les autres avant ou pendant le Silurien inférieur et leurs evolution successive sous la forme d'un seul superterrane. Le Superterrane Kazakh collisione avec un terrane Tarim-Nord Chinois (c'est-à-dire Terrane du Tianshan-Hanshan) durant le Dévonien et le continent Sibérien au Dévonien supérieur. Ce nouvel agencement des plaques induit une marge active continue le long des continents Sibérien, Kazakh et Nord Chinois et la fermeture de l'Océan Junggar-Balkash qui provoque le plissement oroclinal du Superterrane Kazakh durant le Carbonifère. L'histoire de la formation du Domaine Tarim-Nord Chinois est moins complexe. La marge passive nord Cambrienne devient active à l'Ordovicien et l'ouverture Silurienne du bassin d'arrière-arc du Tianshan sud mène à la formation du terrane du Tianshan-Hanshan. La collision Dévonienne entre ce dernier et le Superterrane Kazakh provoque la fermerture de l'Océan Tianshan sud. Finalement, la collision entre la Sibérie et la partie est du continent Tarim-Nord Chinois (c'est-à-dire Mongolie Intérieure) prend place durant le Permien suite à la fermeture de l'Océan Solonker. La majeure partie des Altaïdes est alors formée, seul l'Océan Mongol-Okhotsk est encore ouvert. Ce dernier se fermera seulement au Jurassique.
Resumo:
It is presently assumed that the Borborema Province resulted from a complex collisional process associated with the convergent movement of plates, possibly involving amalgamation and accretion of microplates. This process was consolidated at the end of the Brasiliano event. It is investigated the possible limits for the tectonostratigraphic terranes in the northern portion of the province based on an integrated study of geological and gravity data. The study area comprises the portion of the Borborema Province located north of the Patos Lineament, limited by longitudes 33º00 W and 43º29 44"W and latitudes 1º36 S and 8º00 S. A revision of the regional geology allowed to identify areas presenting contrasting geological attributes, possibly representing different terranes whose limits are always shear zones of Brasiliano-age. The Sobral-Pedro II shear zone is the only one undoubtedly presenting geological attributes of sutures zones. The other shear zones are very likely associated with a geodinymic context of accretion, involving oblique collisions (docking), transcurrent and/or transforming sutures, and deep intracrustal shear zones. The gravity data contributed as a tool to identify strong lateral contrasts of density inside the upper crust possibly associated with crustal blocks tectonically juxtaposed. The dominant long wavelength anomaly in the Bouguer anomaly map is an expressive gradient, grossly parallel to the continental margin, caused by density variation across the crust-mantle interface in the transition from the continental crust to the oceanic crust originated by the separation between South America and Africa. Medium to small wavelength anomalies are due to intracrustal heterogeneities such as different Precambrian crustal blocks, Brasiliano-age granites and Mesozoic sedimentary basins. A regional-residual separation of the Bouguer anomaly map was performed in order to enhance in the residual map the effect due to intracrustal heterogeneities. The methodology used for this separation was a robust polinomial fitting. The inversion of residual gravity field resulted in a density contrast map (Δρ), in an equivalent layer that provided more accurated anomalies contours and consolidated the model which the sources of residual anomalies are located in the upper part of the present crust. Based on the coincidence of gravity lineaments in the residual map and Brasiliano shear zones, and using additional geological information, the following shear zones are proposed as limits between terranes: Patos shear zone, Sobral-Pedro II shear zone, Picuí-João Câmara shear zone, Remígio-Pocinhos shear zone, Senador Pompeu shear zone, Tauá shear zone, and Portalegre shear zone. Based on the geological/geophysical information it is attributed a higher level of confidence to the first three proposed limits(Patos, Sobral Pedro II, and Picuí-João Câmara shear zones). From west to east, these shear zones individualize the following terranes: Northwest of Ceará terrane, Central Ceará terrane, Tauá terrane, Orós-Jaguaribe terrane, Seridó terrane, and São José de Campestre terrane. In our study, the Rio Piranhas and Patos terranes are questioned because their previously proposed limits do not present good geological and gravimetric evidences. On the other hand, the previously proposed Cearense terrane is now subdivided into Central Ceará and Tauá terranes. Two residual gravity profiles located in the Seridó belt were interpreted using 2 ½ D direct gravity modeling. The main result of the modeling process is that all anomalies, with the exception of one, can be explained by outcroppring bodies, therefore restricted to the upper part of the present crust
Resumo:
K-Ar ages of 82 slate and schist (white-mica-rich whole rock) samples are reported for Late Precambrian-Early Ordovician metamorphic rocks of the Wilson, Bowers and Robertson Bay terranes of northern Victoria Land. These are amalgamated in two vertical sections along composite NE-SW horizontal profiles across (1) Oates Coast in the north, and (2) Terra Nova Bay area in the south. The ages are in the range 328-517 Ma. Both profiles show some age variation with altitude, but more importantly, they define an inverted wedge shaped pattern, reflecting a "pop-up" strucure. This is oriented NW-SE at the eastern margin of the Wilson terrane, and the edges coincide with the Exiles and Wilson Thrusts which cross the region. Ages inside the "pop-up" structure are younger, ca. 460-480 Ma, than those along its eastern and western flanks, ca. 490-520 Ma. The K-Ar age patterns thus demonstrate a late Ross Orogenic age (ca. 460 Ma) for this structure, which may be associated with assembly of the Wilson and Bowers terranes.