872 resultados para Cutting parameters
Resumo:
The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.
Resumo:
Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life. Copyright © 2009 by ASME.
Resumo:
Si3N4 tools were coated with a thin diamond film using a Hot-Filament Chemical Vapour Deposition (HFCVD) reactor, in order to machining a grey cast iron. Wear behaviour of these tools in high speed machining was the main subject of this work. Turning tests were performed with a combination of cutting speeds of 500, 700 and 900 m min−1, and feed rates of 0.1, 0.25 and 0.4 mm rot−1, remaining constant the depth of cut of 1 mm. In order to evaluate the tool behaviour during the turning tests, cutting forces were analyzed being verified a significant increase with feed rate. Diamond film removal occurred for the most severe set of cutting parameters. It was also observed the adhesion of iron and manganese from the workpiece to the tool. Tests were performed on a CNC lathe provided with a 3-axis dynamometer. Results were collected and registered by homemade software. Tool wear analysis was achieved by a Scanning Electron Microscope (SEM) provided with an X-ray Energy Dispersive Spectroscopy (EDS) system. Surface analysis was performed by a profilometer.
Resumo:
The distinctive characteristics of carbon fibre reinforced plastics, like low weight or high specific strength, had broadened their use to new fields. Due to the need of assembly to structures, machining operations like drilling are frequent. In result of composites inhomogeneity, this operation can lead to different damages that reduce mechanical strength of the parts in the connection area. From these damages, delamination is the most severe. A proper choice of tool and cutting parameters can reduce delamination substantially. In this work the results obtained with five different tool geometries are compared. Conclusions show that the choice of an adequate drill can reduce thrust forces, thus delamination damage.
Resumo:
In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.
Resumo:
The purpose of this thesis is to reveal how the laser cutting parameters influence lasercutting of particleboard, HDF and MDF. The literature review introduces the basic principle of CO2 laser, CO2 laser equipment and its usage in cutting of wood-based materials. The experimental part focuses on the discussion and analysis ofthe test data and attempts to draw conclusions on the influence of various parameters, including laser power, focal length of the lens and cutting gas, on the cutting speed and kerf quality. The tested materials include various thicknesses of particleboard, HDF and MDF samples. A TRUMPF TLF2700 HQ laser equipment was used for the experiments. To obtain valid data, the test samples must be completely cut through without any bonding of wood fibre. The maximum cutting speed is linear dependent on the laser power in thecondition that the other parameters are constant. For each thickness of a specific material type, there is a minimum laser power for cutting. Normally, the topand bottom kerf widths increase with the enhancement of laser power. There may be a critical laser power which can generate the minimum cross-sectional kerf width. Lens of larger focal length may achieve higher cutting speed. As the focal length becomes larger, the top kerf width tends to increase while the bottom andcross-sectional kerf widths to the opposite. Of all cutting gases, oxygen can help achieve higher cutting speed. The gas pressure of nitrogen does not seem to have strong influence on the cutting result. Generally, 2 bar air is more preferable for higher cutting speed. For particleboard and MDF samples of larger thickness than 12 mm, 2 bar argon can be used to reach remarkably higher cutting speed than the 5 bar. Generally, the 190.5 mm lens can produce smallest total kerf width. The kerf sides of thicker samples are darker than the thinner ones. The sample darkness tends to be lower as laser power increased. 63.5 mm lens seemed tocause more darkness than other lens. 5 bar cutting gases can produce less dark side kerfs than 2 bar ones. Oxygen normally causes darker kerfs than other gases. No distinct differences were found between nitrogen and argon.
Resumo:
The thin disk and fiber lasers are new solid-state laser technologies that offer a combinationof high beam quality and a wavelength that is easily absorbed by metal surfacesand are expected to challenge the CO2 and Nd:YAG lasers in cutting of metals ofthick sections (thickness greater than 2mm). This thesis studied the potential of the disk and fiber lasers for cutting applications and the benefits of their better beam quality. The literature review covered the principles of the disk laser, high power fiber laser, CO2 laser and Nd:YAG laser as well as the principle of laser cutting. The cutting experiments were made with thedisk, fiber and CO2 lasers using nitrogen as an assist gas. The test material was austenitic stainless steel of sheet thickness 1.3mm, 2.3mm, 4.3mm and 6.2mm for the disk and fiber laser cutting experiments and sheet thickness of 1.3mm, 1.85mm, 4.4mm and 6.4mm for the CO2 laser cutting experiments. The experiments focused on the maximum cutting speeds with appropriate cut quality. Kerf width, cutedge perpendicularity and surface roughness were the cut characteristics used to analyze the cut quality. Attempts were made to draw conclusions on the influence of high beam quality on the cutting speed and cut quality. The cutting speeds were enormous for the disk and fiber laser cutting experiments with the 1.3mm and 2.3mm sheet thickness and the cut quality was good. The disk and fiber laser cutting speeds were lower at 4.3mm and 6.2mm sheet thickness but there was still a considerable percentage increase in cutting speeds compared to the CO2 laser cutting speeds at similar sheet thickness. However, the cut quality for 6.2mm thickness was not very good for the disk and fiber laser cutting experiments but could probably be improved by proper selection of cutting parameters.
Resumo:
Fiber laser for materials processing have undergone a rapid development in the pastseveral years. As fiber laser provides a combination of high beam quality and awavelength that is easily absorbed by metal surfaces, the named future laser isexpected to challenge the CO2 and Nd:YAG lasers in the area of metal cutting. This thesis studied the performance of fiber laser cutting mild steel. In the literature review part, it introduced the laser cutting principle and the principle of fiber laser including the newest development of fiber laser cuttingtechnology. Because the fiber laser cutting mild steel is a very young technology, a preliminary test was made in order to investigate effect of the cutting parameters on cut quality. Then the formal fiber laser cutting experiment was madeby using 3 mm thickness S355 steel with oxygen as assistant gas. The experimentwas focused on the cut quality with maximum cutting speed and minimum oxygen gas pressure. And the cut quality is mainly decided by the kerf width, perpendicularity tolerance, surface roughness and striation patterns. After analysis the cutting result, several conclusions were made. Although the best result got in the experiment is not perfect as predicted, the whole result of the test can be accepted. Compared with CO2 laser, a higher cutting speed was achieved by fiber laser with very low oxygen gas pressure. A further improvement about the cutting quality might be possible by proper selection of process parameters. And in order to investigate the cutting performance more clearly, a future study about cutting different thickness mild steel and different shape was recommended.
Resumo:
The oxygen cutting is a thermal cutting process, in which metal is heated locally up to its ignition temperature and burnt off by oxygen blast. Oxygen cutting can be used to remove upset metal of a hollow bar occurred due to solid-state welding process. The main goal of this research was to establish a connection between oxygen blasts and mass of metal removed and relate findings to production to suggest improvements to the current process. This master´s thesis describes the designing and building of a test rig for oxygen blowing measurements. It also contains all executed tests and test results, which were carried out. There are different cutting parameters which were studied as well as their effect on cutting process. The oxygen cutting process, used in solid-state welding process, can be improved by the test results.
Resumo:
This paper by R. E. Catai, E. C. Bianchi, P. R de Águia and M. C. Alves reports on the results of an analysis made of roundness errors, residual stresses, and SEM micrographs of VC131 steel. The analysis involved workpieces ground with two types of cutting fluid: synthetic cutting fluid and emulsive oil. In this study, the cutting parameters were kept constant while the type of cutting fluid was varied. The amount of cutting fluid injected in the process was also varied, aiming to identify the ideal amount required to obtain good results without causing structural damage to the workpiece. The SEM analyses of roundness errors and residual stresses revealed that, of the two cutting fluids, emulsive oil provided better tensions due to its greater lubricating power.
Resumo:
The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the microstructural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness.
Resumo:
The characteristics of carbon fiber-reinforced plastics allow a very broad range of uses. Drilling is often necessary to assemble different components, but this can lead to various forms of damage, such as delamination which is the most severe. However, a reduced thrust force can decrease the risk of delamination. In this work, two variables of the drilling process were compared: tool material and geometry, as well as the effect of feed rate and cutting speed. The parameters that were analyzed include: thrust force, delamination extension and mechanical strength through open-hole tensile test, bearing test, and flexural test on drilled plates. The present work shows that a proper combination of all the factors involved in drilling operations, like tool material, tool geometry and cutting parameters, such as feed rate or cutting speed, can lead to the reduction of delamination damage and, consequently, to the enhancement of the mechanical properties of laminated parts in complex structures, evaluated by open-hole, bearing, or flexural tests.
Resumo:
“Drilling of polymeric matrix composites structures”
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica