989 resultados para Cutting parameters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface finish is one of the most relevant aspects of machining operations, since it is one of the principle methods to assess quality. Also, surface finish influences mechanical properties such as fatigue behavior, wear, corrosion, etc. The feed, the cutting speed, the cutting tool material, the workpiece material and the cutting tool wear are some of the most important factors that affects the surface roughness of the machined surface. Due to the importance of the martensitic 416 stainless steel in the petroleum industry, especially in valve parts and pump shafts, this material was selected to study the influence of the feed per tooth and cutting speed on tool wear and surface integrity. Also the influence of tool wear on surface roughness is analyzed. Results showed that high values of roughness are obtained when using low cutting speed and feed per tooth and by using these conditions tool wear decreases prolonging tool life. Copyright © 2009 by ASME.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Low-pressure MOCVD, with tris(2,4 pentanedionato)aluminum(III) as the precursor, was used in the present investigation to coat alumina on to cemented carbide cutting tools. To evaluate the MOCVD process, the efficiency in cutting operations of MOCVD-coated tools was compared with that of tools coated using the industry-standard CVD process.Three multilayer cemented carbide cutting tool inserts, viz., TiN/TiC/WC, CVD-coated Al2O3 on TiN/TiC/WC, and MOCVD-coated Al2O3 on TiN/TiC/WC, were compared in the dry turning of mild steel. Turning tests were conducted for cutting speeds ranging from 14 to 47 m/min, for a depth of cut from 0.25 to 1 mm, at the constant feed rate of 0.2 mm/min. The axial, tangential, and radial forces were measured using a lathe tool dynamometer for different cutting parameters, and the machined work pieces were tested for surface roughness. The results indicate that, in most of the cases examined, the MOCVD-coated inserts produced a smoother surface finish, while requiring lower cutting forces, indicating that MOCVD produces the best-performing insert, followed by the CVD-coated one. The superior performance of MOCVD-alumina is attributed to the co-deposition of carbon with the oxide, due to the very nature of the precursor used, leading to enhanced mechanical properties for cutting applications in harsh environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Si3N4 tools were coated with a thin diamond film using a Hot-Filament Chemical Vapour Deposition (HFCVD) reactor, in order to machining a grey cast iron. Wear behaviour of these tools in high speed machining was the main subject of this work. Turning tests were performed with a combination of cutting speeds of 500, 700 and 900 m min−1, and feed rates of 0.1, 0.25 and 0.4 mm rot−1, remaining constant the depth of cut of 1 mm. In order to evaluate the tool behaviour during the turning tests, cutting forces were analyzed being verified a significant increase with feed rate. Diamond film removal occurred for the most severe set of cutting parameters. It was also observed the adhesion of iron and manganese from the workpiece to the tool. Tests were performed on a CNC lathe provided with a 3-axis dynamometer. Results were collected and registered by homemade software. Tool wear analysis was achieved by a Scanning Electron Microscope (SEM) provided with an X-ray Energy Dispersive Spectroscopy (EDS) system. Surface analysis was performed by a profilometer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nodularised Ductile Cast Iron, when subjected to heat treatment processes - austenitising and austempering produces Austempered Ductile Iron (ADI). The microstructure of ADI also known as "ausferrite" consists of ferrite, austenite and graphite nodules. Machining ADI using conventional techniques is often a problematic issue due to the microstructural phase transformation from austenite to martensite during machining. This paper evaluates the wear characteristics of ultra hard cutting tools when machining ADI and its effect on machinability. Machining trials consist of turning ADI (ASTMGrade3) using two sets of PCBN tools with 90% and 50% CBN content and two sets of ceramics tools; Aluminium Oxide Titanium Carbide and Silicon Carbide - whisker reinforced Ceramic. The cutting parameters chosen are categorized as roughing and finishing conditions; the roughing condition comprises of constant cutting speed (425 m/min) and depth of cut (2mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The finishing condition comprises of constant cutting speed (700 m/min) and depth of cut (0.5mm) combined with variable feed rates of 0.1, 0.2, 0.3 and 0.4mm/rev. The benchmark condition to evaluate the performance of the cutting tools was tool wear evaluation, surface texture analysis and cutting force analysis. The paper analyses thermal softening of the workpiece by the tool and its effect on the shearing mechanism under rough and finish machining conditions in term of lower cutting forces and enhanced surface texture of the machined part.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper by R. E. Catai, E. C. Bianchi, P. R de Águia and M. C. Alves reports on the results of an analysis made of roundness errors, residual stresses, and SEM micrographs of VC131 steel. The analysis involved workpieces ground with two types of cutting fluid: synthetic cutting fluid and emulsive oil. In this study, the cutting parameters were kept constant while the type of cutting fluid was varied. The amount of cutting fluid injected in the process was also varied, aiming to identify the ideal amount required to obtain good results without causing structural damage to the workpiece. The SEM analyses of roundness errors and residual stresses revealed that, of the two cutting fluids, emulsive oil provided better tensions due to its greater lubricating power.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The quality of a machined finish plays a major role in the performance of milling operations, good surface quality can significantly improve fatigue strength, corrosion resistance, or creep behaviour as well as surface friction. In this study, the effect of cutting parameters and cutting fluid pressure on the quality measurement of the surface of the crest for threads milled during high speed milling operations has been scrutinised. Cutting fluid pressure, feed rate and spindle speed were the input parameters whilst minimising surface roughness on the crest of the thread was the target. The experimental study was designed using the Taguchi L32 array. Analysing and modelling the effective parameters were carried out using both a multi-layer perceptron (MLP) and radial basis function (RBF) artificial neural networks (ANNs). These were shown to be highly adept for such tasks. In this paper, the analysis of surface roughness at the crest of the thread in high speed thread milling using a high accuracy optical profile-meter is an original contribution to the literature. The experimental results demonstrated that the surface quality in the crest of the thread was improved by increasing cutting speed, feed rate ranging 0.41-0.45 m/min and cutting fluid pressure ranging 2-3.5 bars. These outcomes characterised the ANN as a promising application for surface profile modelling in precision machining.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a study of tool wear and geometry response whenmachinability tests were applied under milling operations onthe Super Austenitic Stainless Steel alloy AL-6XN. Eight milling trials were executed under two cutting speeds, two feed rates, andtwo depths of cuts. Cutting edge profile measurements were performed to reveal response of cutting edge geometry to the cuttingparameters and wear. A scanning electron microscope (SEM) was used to inspect the cutting edges. Results showed the presenceof various types of wear such as adhesion wear and abrasion wear on the tool rake and flank faces. Adhesion wear represents theformation of the built-up edge, crater wear, and chipping, whereas abrasion wear represents flank wear.Thecommonly formed wearwas crater wear. Therefore, the optimum tool life among the executed cutting trails was identified according to minimum lengthand depth of the crater wear.The profile measurements showed the formation of new geometries for the worn cutting edges due toadhesion and abrasion wear and the cutting parameters.The formation of the built-up edge was observed on the rake face of thecutting tool. The microstructure of the built-up edge was investigated using SEM. The built-up edge was found to have the austeniteshear lamellar structure which is identical to the formed shear lamellae of the produced chip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]Los objetivos del siguiente trabajo consisten en analizar e optimizar el proceso del torneado en duro del acero ASP-23 indagando de especial manera en la realización de diferentes soluciones para brochas. En este caso, este proyecto nace de la importancia de reducir así como los costes económicos y los costes temporales de fabricación de elementos basados en el acero ASP-23 mediante el torneado en duro; proceso de mecanizado, cuya importancia cada vez es mayor como en las industrias de automoción o aeronáutica. El desarrollo del proyecto es fruto de la necesidad de EKIN S. Coop, uno de los líderes en los procesos de máquina-herramienta de alta precisión para el brochado, de desarrollar un proceso de mecanizado más eficaz de las brochas que produce. Así en el aula máquina-herramienta (ETSIB) se han intentado demostrar los beneficios que tiene el torneado en duro en el mecanizado del ASP-23. Hoy en día, con el rápido desarrollo de nuevos materiales, los procesos de fabricación se están haciendo cada vez más complejos, por la amplia variedad de maquinas con las que se realizan los procesos, por la variedad de geometría/material de las herramientas empleadas, por las propiedades del material de la pieza a mecanizar, por los parámetros de corte tan variados con los que podemos implementar el proceso (profundidad de corte, velocidad, alimentación...) y por la diversidad de elementos de sujeción utilizados. Además debemos ser conscientes de que tal variedad implica grandes magnitudes de deformaciones, velocidades y temperaturas. He aquí la justificación y el gran interés en el proyecto a realizar. Por ello, en este proyecto intentamos dar un pequeño paso en el conocimiento del proceso del torneado en duro de aceros con poca maquinabilidad, siendo conscientes de la amplia variedad y dificultad del avance en la ingeniería de fabricación y del mucho trabajo que queda por hacer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of hybrid materials including carbon fiber reinforced plastics (CFRPs) and lightweight metals such as titanium are increasing particularly in aerospace applications. Multi-material stacks require a number of holes for the assembly purposes. In this research, drilling trials have been carried out in CFRP, Ti-6Al-4V and CFRP/Ti-6Al-4V stack workpieces using AlTiN coated tungsten carbide drill bit. The effects of process parameters have been investigated. The thrust force, torque, burr formation, delamination, surface roughness and tool wear have been analyzed at various processing condition. The experimental results have shown that the thrust force, torque, burr formation and the average surface roughness increase with the increased feed rate and decrease with the increased cutting speed in drilling of Ti-6Al-4V. In drilling CFRP, delamination and the average surface roughness has similar tendency with the cutting parameters however thrust force and torque rises with the increased cutting speed. The results showed that after making 15 holes in CFRP/Ti-6Al-4V stack, measured thrust forces were increased by 20% in CFRP and by 45% in Ti-6Al-4V. Delamination was found to be much smaller in drilling of CFRP in stack from compared to drilling single CFRP. Tool life was significantly shortened in drilling of stack due to the combination of the wear mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Drilling of Ti6Al4V is investigated experimentally and numerically. A 3D finite element model developed based on Lagrangian approach using commercial finite element software ABAQUS/explicit. 3D complex drill geometry is included in the model. The drilling process simulations are performed at the combinations of three cutting speed and four feed rates. The effects of cutting parameters on the induced thrust force and torque are predicted by the developed model. For validation purpose, experimental trials have been performed in similar condition to the simulations. The forces and torques measured during experiment are compared to the results of the finite element analysis. The agreement of the experimental results for force and torque values with the FE results is very good. Moreover, surface roughness of the holes was measured for mapping of machining. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, 39 sets of hard turning (HT) experimental trials were performed on a Mori-Seiki SL-25Y (4-axis) computer numerical controlled (CNC) lathe to study the effect of cutting parameters in influencing the machined surface roughness. In all the trials, AISI 4340 steel workpiece (hardened up to 69 HRC) was machined with a commercially available CBN insert (Warren Tooling Limited, UK) under dry conditions. The surface topography of the machined samples was examined by using a white light interferometer and a reconfirmation of measurement was done using a Form Talysurf. The machining outcome was used as an input to develop various regression models to predict the average machined surface roughness on this material. Three regression models - Multiple regression, Random Forest, and Quantile regression were applied to the experimental outcomes. To the best of the authors’ knowledge, this paper is the first to apply Random Forest or Quantile regression techniques to the machining domain. The performance of these models was compared to each other to ascertain how feed, depth of cut, and spindle speed affect surface roughness and finally to obtain a mathematical equation correlating these variables. It was concluded that the random forest regression model is a superior choice over multiple regression models for prediction of surface roughness during machining of AISI 4340 steel (69 HRC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os estudos de maquinabilidade de biomateriais e outros materiais aplicados na área médica são extensos. Todavia, muitos destes estudos recorrem a modelos de geometria regular e operações elementares de maquinagem. Relativamente a estas, os estudos académicos atualmente disponíveis mostram que a tecnologia preferencial é o torneamento, opção que se fundamenta na simplicidade de análise (corte ortogonal). Saliente-se ainda que, neste contexto, a liga de titânio Ti-6Al-4V constitui o biomaterial mais utilizado. Numa perspetiva complementar, refira-se que as publicações científicas evidenciam que a informação disponível sobre a fresagem Ti-6Al-4V não é muito extensa e a do Co-28Cr-6Mo é quase inexistente. A presente dissertação enquadra-se neste domínio e representa mais uma contribuição para o estudo da maquinabilidade das ligas de Titânio e de crómio-cobalto. A aplicação de operações de maquinagem complexas, através do recurso a programas informáticos de fabrico assistido por computador (CAM), em geometrias complexas, como é o caso das próteses femorais anatómicas, e o estudo comparativo da maquinabilidade das ligas Co-28Cr-6Mo e Ti-6Al-4V, constituem os objetivos fundamentais deste trabalho de doutoramento. Neste trabalho aborda-se a problemática da maquinabilidade das ligas metálicas usadas nos implantes ortopédicos, nomeadamente as ligas de titânio, de crómiocobalto e os aços Inoxidáveis. Efetua-se ainda um estudo da maquinagem de uma prótese femoral com uma forma geométrica complexa, onde as operações de corte foram geradas recorrendo às tecnologias de fabrico assistido por computador (CAD/CAM). Posteriormente, procedeu-se ao estudo da maquinabilidade das duas ligas usadas neste trabalho, dando uma atenção particular à determinação das forças de corte para diferentes velocidades de corte. Para além da monitorização da evolução da força de corte, o desgaste das ferramentas, a dureza e a rugosidade foram avaliadas, em função da velocidade de corte imposta. Por fim, com base nas estratégias de maquinagem adotadas, analisa-se a maquinabilidade e selecionam-se os parâmetros de corte mais favoráveis para as ligas de Titânio e Crómio-cobalto. Os resultados obtidos mostram que a liga de crómio-cobalto induz maior valor de força de corte do que a liga de titânio. Observa-se um aumento progressivo das forças de corte quando a velocidade de corte aumenta, até atingir o valor máximo para a velocidade de corte de 80m/min, após a qual, a força de corte tende a diminuir. Apesar do fabricante das ferramentas recomendar a velocidade de corte de 50 m/min para ambos os materiais, conclui-se que a velocidade de corte de 65 m/min induz o mesmo desgaste na ferramenta de corte no caso da liga de titânio, e menor desgaste no caso da liga de crómio-cobalto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.