404 resultados para Cutthroat trout
Resumo:
"June 1996."
Resumo:
"August 1996."
Resumo:
Myxobolus cerebralis, the cause of whirling disease in salmonids, has dispersed to waters in 25 states within the USA, often by an unknown vector. Its incidence in Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri within the highly protected environment of Yellowstone Lake, Yellowstone National Park, is a prime example. Given the local abundances of piscivorous birds, we sought to clarify their potential role in the dissemination of M. cerebralis. Six individuals from each of three bird species (American white pelican Pelecanus erythrorhynchos, double-crested cormorant Phalacrocorax auritus, and great blue heron Ardea herodias) were fed known-infected or uninfected rainbow trout O. mykiss. Fecal material produced during 10-d periods before and after feeding was collected to determine whether M. cerebralis could be detected and, if so, whether it remained viable after passage through the gastrointestinal tract of these birds. For all (100%) of the nine birds fed known-infected fish, fecal samples collected during days 1–4 after feeding tested positive for M. cerebralis by polymerase chain reaction. In addition, tubificid worms Tubifex tubifex that were fed fecal material from known-infected great blue herons produced triactinomyxons in laboratory cultures, confirming the persistent viability of the parasite. No triactinomyxons were produced from T. tubifex fed fecal material from known-infected American white pelicans or double-crested cormorants, indicating a potential loss of parasite viability in these species. Great blue herons have the ability to concentrate and release viable myxospores into shallow-water habitats that are highly suitable for T. tubifex, thereby supporting a positive feedback loop in which the proliferation of M. cerebralis is enhanced. The presence of avian piscivores as an important component of aquatic ecosystems should continue to be supported. However, given the distances traveled by great blue herons between rookeries and foraging areas in just days, any practices that unnaturally attract them may heighten the probability of M. cerebralis dispersal and proliferation within the Greater Yellowstone Ecosystem.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The use of aluminum silicates for decontaminating animal feed containing aflatoxins has yielded encouraging results in chicken and turkey poults. In contrast, very few studies have tested these substances in aquaculture. In this work, we investigated the efficacy of a trout diet containing 0.5% hydrated sodium aluminosilicate (HSAS) in protecting against contamination with aflatoxin B1. Trout were reared on these diets for one year and the experimental groups were examined monthly for hepatic presumptive preneoplastic and neoplastic lesions. Regardless of the presence of HSAS, all of the fish that received aflatoxin in their diet have shown hepatic lesions indicative of a carcinogenic process, presenting also the development of cancer in some fish. The concentration of HSAS used in this study was ineffective in preventing the onset of hepatic lesions induced by aflatoxin B1 in rainbow trout.
Resumo:
Adult and preadult Dissonus manteri attached to the gills of Plectropomus leopardus cause significant pathology in the form of large hyperplastic nodules on the afferent (leading), edges of gill filaments. Nodules result from the dual actions of parasite attachment and feeding. The host response is characterized by severe epithelial hyperplasia, supplemented by fibroplasia and inflammation. Parasites attach close to the gill arch near the base of filaments. They have little effect on gill vasculature as the maxillipeds penetrate the filament superficial to the efferent filament artery and do not interfere with the blood vessels of the secondary lamellae. Tissue proliferation is limited to the wide portion of filament 'edge' epithelium in the proximal third and also does not extend to the secondary lamellae. Nodules are most numerous towards the ends of hemibranchs and are generally absent from the central regions. Leading hemibranchs bear significantly more nodules than their trailing counterparts. Of the total number of nodules, 20.5% are located on the pseudobranchs. Distribution patterns are considered to be primarily the result of D. manteri avoiding strong water currents, although this cannot explain the difference between numbers on leading and trailing hemibranchs.
Resumo:
A vitamin E extraction method for rainbow trout flesh was optimized, validated, and applied in fish fed commercial and Gracilaria vermiculophylla-supplemented diets. Five extraction methods were compared. Vitamers were analyzed by HPLC/DAD/fluorescence. A solid-liquid extraction with n-hexane, which showed the best performance, was optimized and validated. Among the eight vitamers, only α- and γ-tocopherol were detected in muscle samples. The final method showed good linearity (>0.999), intra- (<3.1%) and inter-day precision (<2.6%), and recoveries (>96%). Detection and quantification limits were 39.9 and 121.0 ng/g of muscle, for α-tocopherol, and 111.4 ng/g and 337.6 ng/g, for γ-tocopherol, respectively. Compared to the control group, the dietary inclusion of 5% G. vermiculophylla resulted in a slight reduction of lipids in muscle and, consequently, of α- and γ-tocopherol. Nevertheless, vitamin E profile in lipids was maintained. In general, the results may be explained by the lower vitamin E level in seaweed-containing diet. Practical Applications: Based on the validation results and the low solvent consumption, the developed method can be used to analyze vitamin E in rainbow trout. The results of this work are also a valuable information source for fish feed industries and aquaculture producers, which can focus on improving seaweed inclusion in feeds as a source of vitamin E in fish muscle and, therefore, take full advantage of all bioactive components with an important role in fish health and flesh quality.
Resumo:
BACKGROUND: Males that are successful in intra-sexual competition are often assumed to be of superior quality. In the mating system of most salmonid species, intensive dominance fights are common and the winners monopolise most mates and sire most offspring. We drew a random sample of mature male brown trout (Salmo trutta) from two wild populations and determined their dominance hierarchy or traits linked to dominance. The fish were then stripped and their sperm was used for in vitro fertilisations in two full-factorial breeding designs. We recorded embryo viability until hatching in both experiments, and juvenile survival during 20 months after release into a natural streamlet in the second experiment. Since offspring of brown trout get only genes from their fathers, we used offspring survival as a quality measure to test (i) whether males differ in their genetic quality, and if so, (ii) whether dominance or traits linked to dominance reveal 'good genes'. RESULTS: We found significant additive genetic variance on embryo survival, i.e. males differed in their genetic quality. Older, heavier and larger males were more successful in intra-sexual selection. However, neither dominance nor dominance indicators like body length, weight or age were significantly linked to genetic quality measured as embryo or juvenile survival. CONCLUSION: We found no evidence that females can improve their offspring's genetic viability by mating with large and dominant males. If there still were advantages of mating with dominant males, they may be linked to non-genetic benefits or to genetic advantages that are context dependent and therefore possibly not revealed under our experimental conditions - even if we found significant additive genetic variation for embryo viability under such conditions.
Resumo:
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.
Resumo:
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long-term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.
Resumo:
Phenotypic plasticity can increase tolerance to heterogeneous environments but the elevations and slopes of reaction norms are often population specific. Disruption of locally adapted reaction norms through outcrossing can lower individual viability. Here, we sampled five genetically distinct populations of brown trout (Salmo trutta) from within a river network, crossed them in a full-factorial design, and challenged the embryos with the opportunistic pathogen Pseudomonas fluorescens. By virtue of our design, we were able to disentangle effects of genetic crossing distance from sire and dam effects on early life-history traits. While pathogen infection did not increase mortality, it was associated with delayed hatching of smaller larvae with reduced yolk sac reserves. We found no evidence of a relationship between genetic distance (W, FST) and the expression of early-life history traits. Moreover, hybrids did not differ in phenotypic means or reaction norms in comparison to offspring from within-population crosses. Heritable variation in early life-history traits was found to remain stable across the control and pathogen environments. Our findings show that outcrossing within a rather narrow geographical scale can have neutral effects on F1 hybrid viability at the embryonic stage, i.e. at a stage when environmental and genetic effects on phenotypes are usually large.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.