998 resultados para Cuprizone-induced Demyelination


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous work we found that mezerein, a C kinase activator, as well as basic fibroblast growth factor (FGF-2) induce demyelination and partial oligodendrocyte dedifferentiation in highly differentiated aggregating brain cell cultures. Here we show that following protein kinase C activator-induced demyelination, effective remyelination occurs. We found that mezerein or FGF-2 caused a transient increase in DNA synthesis following a pronounced decrease of the myelin markers myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase. Both oligodendrocytes and astrocytes were involved in this mitogenic response. Within 17 days after demyelination, myelin was restored to the level of the untreated controls. Transient mitotic activity was indispensable for remyelination. The present results suggest that myelinating oligodendrocytes retain the capacity to reenter the cell cycle, and that this plasticity is important for the regeneration of the oligodendrocyte lineage and remyelination. Although it cannot be excluded that a quiescent population of oligodendrocyte precursor cells was present in the aggregates and able to proliferate, differentiate and remyelinate, we could not find evidence supporting this view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. METHODS: Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. RESULTS: GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m-RNA expression. In demyelinating cultures, reactivity of both microglial cells and astrocytes was observed, while the expression of the inflammatory cytokines and iNOS remained unaffected. Furthermore, GW 501516 did not protect against the demyelination-induced changes in gene expression. CONCLUSION: Although GW 501516 showed anti-inflammatory activity, it did not protect against antibody-mediated demyelination. This suggests that the protective effects of PPAR-beta agonists observed in vivo can be attributed to their anti-inflammatory properties rather than to a direct protective or trophic effect on oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peripheral nerve ultrastructure was assessed after single or multiple local injections of the intercalating dye ethidium bromide. Thirty-four adult Wistar rats of both sexes were divided into five groups and maintained in a controlled environment with rat chow and water ad libitum throughout the experiment. The experimental animals were injected with 1 µl of 0.1% ethidium bromide in 0.9% saline into the central third of the left sciatic nerve 1 (group 1), 2 (group 2), 4 (group 3), 6 (group 4) or 8 (group 5) times. In groups 2 to 5 the injections were made at 28-day intervals. Control animals received the same amount of 0.9% saline. The animals were killed at different times after injection: group 1 at 7 days (2 rats) and 15 days (2 rats); for groups 2, 3, 4 and 5, all rats were killed 10 days after the last injection and the lesions were investigated by light and transmission electron microscopy. In the acute lesions, intoxicated Schwann cells showed a vacuolated cytoplasm and separation of the sheaths from the axon. Myelin sheaths underwent progressive vesiculation and subsequent segmental demyelination. Myelin debris were withdrawn by macrophages and remyelination by Schwann cells was prominent. With the increase in the number of injections collagen fibers also increased in number and progressively enveloped smaller numbers of remyelinated axons composing new fascicles. Wallerian degeneration of fibers apparently not affected by ethidium bromide was more intense in the nerves from groups 4 and 5. The peripheral nerve repairs itself after demyelinating challenges with a profusion of collagen fibers and new fasciculations. This experimental model is valid to mimic recurrent demyelinating neuropathies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that enclogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligo-dendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cupri-zone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monoclonal antibody (8-18C5) directed against myelin/oligodendrocyte glycoprotein (MOG) induced demyelination in aggregating brain cell cultures. With increasing doses of anti-MOG antibody in the presence of complement, myelin basic protein (MBP) concentration decreased in a dose-related manner. A similar, albeit less pronounced, effect was observed on specific activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase. In the absence of complement, anti-MOG antibody did not induce detectable demyelination. In contrast to the effect of anti-MOG antibody and as expected, anti-MBP antibody did not demyelinate aggregating brain cell cultures in the presence of complement. These results provide additional support to the suggestion that MOG, a quantitatively minor myelin component located on the external side of the myelin membrane, is a good target antigen for antibody-induced demyelination. Indeed, they show that a purified anti-MOG antibody directed against a single epitope on the glycoprotein can produce demyelination, not only in vivo as previously shown, but also in cultures. Such an observation has not been made with polyclonal antisera raised against purified myelin proteins like MBP and proteolipid protein, the major protein components of the myelin membrane, or myelin-associated glycoprotein. These observations may have important implications regarding the possible role of anti-MOG antibodies in demyelinating diseases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated by agents such as interferon-g (IFN-g) and lipopolysaccharide (LPS). Aggregating brain cultures exposed to a repeated treatment (3 fold) with IFN-g (50 U/ml) and LPS (5 ug/ml) were used as an in vitro model of demyelination. Demyelination could be due to either the direct effect of IFN-g and LPS on oligodendrocytes or the IFN-g and LPS-induced inflammatory response. We investigated the involvement of microglial reactivity in demylination and remyelination by using minocycline, an antibiotic known to block microglial reactivity. Changes in myelination were examined by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) at the mRNA level by quantitative RT-PCR and at the protein level by Western blotting and immunohistochemistry. To evaluate brain inflammatory reactions, microglia were stained with isolectin B4 (IB4), quantitative RT-PCR was used to determine the expression of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and inducible NO synthase (iNOS). The repeated treatment with IFN-g and LPS caused demyelination, as indicated by a decrease in MBP and MOG expression. It also activated microglial cells, and up-regulated TNF-a, IL-6, and iNOS expression. Although minocycline did not affect the IFN-g- and LPS-induced upregulation of TNF-a, IL-6, it decreased the number of IB4-labeled microglial cells. Furthermore, minocycline did not prevent demyelination, whereas it strongly increased MBP expression one week after the end of the demyelinating treatment. In conclusion, the present results show that minocycline promoted remyelination after IFN-g- and LPS-induced demyelination, presumably due to its effects on microglial cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg2+-dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leprosy remains prevalent in Brazil. ErbB2 is a receptor for leprosy bacilli entering Schwann cells, which mediates Mycobacterium leprae-induced demyelination and the ERBB2 gene lies within a leprosy susceptibility locus on chromosome 17q11-q21. To determine whether polymorphisms at the ERBB2 locus contribute to this linkage peak, three haplotype tagging single nucleotide polymorphisms (tag-SNPs) (rs2517956, rs2952156, rs1058808) were genotyped in 72 families (208 cases; 372 individuals) from the state of Pará (PA). All three tag-SNPs were associated with leprosy per se [best SNP rs2517959 odds ratio (OR) = 2.22; 95% confidence interval (CI) 1.37-3.59; p = 0.001]. Lepromatous (LL) (OR = 3.25; 95% CI 1.37-7.70; p = 0.007) and tuberculoid (TT) (OR = 1.79; 95% CI 1.04-3.05; p = 0.034) leprosy both contributed to the association, which is consistent with the previous linkage to chromosome 17q11-q21 in the population from PA and supports the functional role of ErbB2 in disease pathogenesis. To attempt to replicate these findings, six SNPs (rs2517955, rs2517956, rs1810132, rs2952156, rs1801200, rs1058808) were genotyped in a population-based sample of 570 leprosy cases and 370 controls from the state of Rio Grande do Norte (RN) and the results were analysed using logistic regression analysis. However, none of the associations were replicated in the RN sample, whether analysed for leprosy per se, LL leprosy, TT leprosy, erythema nodosum leprosum or reversal reaction conditions. The role of polymorphisms at ERBB2 in controlling susceptibility to leprosy in Brazil therefore remains unclear.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental autoimmune encephalomyelitis (EAE) is an artificially induced demyelination of the central nervous system (CNS) that resembles multiple sclerosis in its clinical, histopathological, and immunological features. Activated Th1 and Th17 cells are thought to be the main immunological players during EAE development. This study was designed to evaluate peripheral and local contribution of IL-17 to acute and chronic EAE stages. C57BL/6 mice were immunized with MOG plus complete Freund's adjuvant followed by pertussis toxin. Mice presented an initial acute phase characterized by accentuated weight loss and high clinical score, followed by a partial recovery when the animals reached normal body weight and smaller clinical scores. Spleen cells stimulated with MOG produced significantly higher levels of IFN-γ during the acute period whereas similar IL-17 levels were produced during both disease stages. CNS-infiltrating cells stimulated with MOG produced similar amounts of IFN-γ but, IL-17 was produced only at the acute phase of EAE. The percentage of Foxp3+ Treg cells, at the spleen and CNS, was elevated during both phases. The degree of inflammation was similar at both disease stages. Partial clinical recovery observed during chronic EAE was associated with no IL-17 production and presence of Foxp3+ Treg cells in the CNS. © 2013 Sofia Fernanda Gonçalves Zorzella-Pezavento et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microglial cells represent the endogenous immune system of the central nervous system (CNS). Upon pathological insults they reveal their immunological potential aimed at regaining homeostasis. These reactions have long been believed to follow a uniform and unspecific pattern which is irrespective to the underlying disease entity. Evidence is growing that this view seriously underrates microglial competence as the defenders of the CNS. In the present study, microglial cells of 47 dogs were examined ex vivo by means of flow cytometry. Ex vivo examination included immunophenotypic characterization using eight different surface markers and functional studies such as phagocytosis assay and the reactive oxygen species (ROS) generation test. The dogs were classified according to their histopathological diagnoses in disease categories (controls, canine distemper virus (CDV) induced demyelination, other diseases of the CNS) and results of microglial reaction profiles were compared. Immunophenotypic characterization generally revealed relative high conformity in the microglial disease response among the different groups, however the functional response was shown to be more specific. Dogs with intracranial inflammation and dogs with demyelination showed an enhanced phagocytosis, whereas a significant up-regulation of ROS generation was found in dogs with demyelination due to CDV infection. This strongly suggests a specific response of microglia to infection with CDV in the settings of our study and underlines the pivotal role of microglial ROS generation in the pathogenesis of demyelinating diseases, such as canine distemper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Previous work has shown that aggregate cultures prepared from fetal rat telencephalon and grown in a chemically defined medium offer a useful model to study developmental processes such as myelin synthesis. Since compact myelin is formed in these cultures, we investigated the possibility to use this culture system to study demyelinating mechanisms. In particular, we examined the effect of a monoclonal antibody (8-18C5) directed against the myelin/oligodendrocyte glycoprotein (MOG). We found that addition of anti-MOG antibodies and complement to aggregate cultures led to a highly significant decrease in myelin basic protein (MBP) content and 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP) specific activity. These results indicate that, in our culture system, anti-MOG antibodies have a strong demyelinating effect.