977 resultados para Cumulative Plots
Resumo:
This paper provides fundamental understanding for the use of cumulative plots for travel time estimation on signalized urban networks. Analytical modeling is performed to generate cumulative plots based on the availability of data: a) Case-D, for detector data only; b) Case-DS, for detector data and signal timings; and c) Case-DSS, for detector data, signal timings and saturation flow rate. The empirical study and sensitivity analysis based on simulation experiments have observed the consistency in performance for Case-DS and Case-DSS, whereas, for Case-D the performance is inconsistent. Case-D is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
This paper presents a model to estimate travel time using cumulative plots. Three different cases considered are i) case-Det, for only detector data; ii) case-DetSig, for detector data and signal controller data and iii) case-DetSigSFR: for detector data, signal controller data and saturation flow rate. The performance of the model for different detection intervals is evaluated. It is observed that detection interval is not critical if signal timings are available. Comparable accuracy can be obtained from larger detection interval with signal timings or from shorter detection interval without signal timings. The performance for case-DetSig and for case-DetSigSFR is consistent with accuracy generally more than 95% whereas, case-Det is highly sensitive to the signal phases in the detection interval and its performance is uncertain if detection interval is integral multiple of signal cycles.
Analytical modeling and sensitivity analysis for travel time estimation on signalized urban networks
Resumo:
This paper presents a model for estimation of average travel time and its variability on signalized urban networks using cumulative plots. The plots are generated based on the availability of data: a) case-D, for detector data only; b) case-DS, for detector data and signal timings; and c) case-DSS, for detector data, signal timings and saturation flow rate. The performance of the model for different degrees of saturation and different detector detection intervals is consistent for case-DSS and case-DS whereas, for case-D the performance is inconsistent. The sensitivity analysis of the model for case-D indicates that it is sensitive to detection interval and signal timings within the interval. When detection interval is integral multiple of signal cycle then it has low accuracy and low reliability. Whereas, for detection interval around 1.5 times signal cycle both accuracy and reliability are high.
Resumo:
This paper presents a methodology for estimation of average travel time on signalized urban networks by integrating cumulative plots and probe data. This integration aims to reduce the relative deviations in the cumulative plots due to midlink sources and sinks. During undersaturated traffic conditions, the concept of a virtual probe is introduced, and therefore, accurate travel time can be obtained when a real probe is unavailable. For oversaturated traffic conditions, only one probe per travel time estimation interval—360 s or 3% of vehicles traversing the link as a probe—has the potential to provide accurate travel time.
Resumo:
Travel time is an important network performance measure and it quantifies congestion in a manner easily understood by all transport users. In urban networks, travel time estimation is challenging due to number of reasons such as, fluctuations in traffic flow due to traffic signals, significant flow to/from mid link sinks/sources, etc. The classical analytical procedure utilizes cumulative plots at upstream and downstream locations for estimating travel time between the two locations. In this paper, we discuss about the issues and challenges with classical analytical procedure such as its vulnerability to non conservation of flow between the two locations. The complexity with respect to exit movement specific travel time is discussed. Recently, we have developed a methodology utilising classical procedure to estimate average travel time and its statistic on urban links (Bhaskar, Chung et al. 2010). Where, detector, signal and probe vehicle data is fused. In this paper we extend the methodology for route travel time estimation and test its performance using simulation. The originality is defining cumulative plots for each exit turning movement utilising historical database which is self updated after each estimation. The performance is also compared with a method solely based on probe (Probe-only). The performance of the proposed methodology has been found insensitive to different route flow, with average accuracy of more than 94% given a probe per estimation interval which is more than 5% increment in accuracy with respect to Probe-only method.
Resumo:
This article presents a methodology that integrates cumulative plots with probe vehicle data for estimation of travel time statistics (average, quartile) on urban networks. The integration reduces relative deviation among the cumulative plots so that the classical analytical procedure of defining the area between the plots as the total travel time can be applied. For quartile estimation, a slicing technique is proposed. The methodology is validated with real data from Lucerne, Switzerland and it is concluded that the travel time estimates from the proposed methodology are statistically equivalent to the observed values.
Resumo:
This paper presents a methodology for real-time estimation of exit movement-specific average travel time on urban routes by integrating real-time cumulative plots, probe vehicles, and historic cumulative plots. Two approaches, component based and extreme based, are discussed for route travel time estimation. The methodology is tested with simulation and is validated with real data from Lucerne, Switzerland, that demonstrate its potential for accurate estimation. Both approaches provide similar results. The component-based approach is more reliable, with a greater chance of obtaining a probe vehicle in each interval, although additional data from each component is required. The extreme-based approach is simple and requires only data from upstream and downstream of the route, but the chances of obtaining a probe that traverses the entire route might be low. The performance of the methodology is also compared with a probe-only method. The proposed methodology requires only a few probes for accurate estimation; the probe-only method requires significantly more probes.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
This research aims to develop a reliable density estimation method for signalised arterials based on cumulative counts from upstream and downstream detectors. In order to overcome counting errors associated with urban arterials with mid-link sinks and sources, CUmulative plots and Probe Integration for Travel timE estimation (CUPRITE) is employed for density estimation. The method, by utilizing probe vehicles’ samples, reduces or cancels the counting inconsistencies when vehicles’ conservation is not satisfied within a section. The method is tested in a controlled environment, and the authors demonstrate the effectiveness of CUPRITE for density estimation in a signalised section, and discuss issues associated with the method.
Resumo:
Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.
Cumulative effects of vinasse on the characteristics of red-yellow latosols under cerrado vegetation
Resumo:
Vinasse, a liquor effluent from the alcohol and sugar making industry, was applied annually for twelve years to medium-textured red-yellow latosols under cerrado vegetation sensu stricto, to study the environmental impacts on the biotic and abiotic factors. Four plots were established of which two acted as control and the other two received annual doses of vinasse. The studies were begun in 1980 when the first annual dose of 20 L m-2 year-1 was added to the soil without removing the top scrub layer. Theses doses were added to the soil until 1983, but in 1984 the doses were increased to 50 L m-2 year-1 and used until 1991. Soil samples were taken at a depth of 15 cm every three months from 1987 to 1991. Twenty seven environmental variables in the vinasse-treated and untreated plots were studied. These factors consisted of different enzymatic activities, a number of filamentous fungi, bacteria, actinomycetes and other micro-organisms, nutrients and some micro-climatic factors. The results obtained were statistically analyzed using the Tukey test, Pearson correlation and variance test methods with replicates and three factors. Matrices were determined using the correlation coefficient method and were compared with those of earlier published studies in the same area. The comparison of the results helped characterize changes in the environmental factors studied and in the correlation between them, after using annual cumulative doses of vinasse. Positive effects were observed only for the first six years of this application but vinasse had negative effects after the seventh year. It is concluded that medium-textured red-yellow latosols cannot be treated with vinasse for proloned periods.
Resumo:
The most interesting questions that arise in patent law are the ones that test the boundaries of patentable subject matter. One of those questions has been put forward recently in the United States in an argument in favour of patenting the plots of fictional stories. United States attorney Andrew F Knight has claimed that storylines are patentable subject matter and should be recognised as such. What he claims is patentable is not the copyrightable expression of a written story or even a written outline of a plot but the underlying plot of a story itself. The commercial application of ‘storyline patents’, as he describes them, is said to be their exclusive use in books and movies. This article analyses the claims made and argues that storylines are not patentable subject matter under Australian law. It also contends that policy considerations, as well as the very nature of creative works, weigh against recognition of ‘storyline patents’.