992 resultados para Cultivation process
Resumo:
During the benthic cultivation process of Mytilus edulis (blue mussels), wild mussel seed is often transplanted from naturally occurring subtidal beds to sheltered in-shore waters to be grown to a commercial size. The survival of these relaid mussels is ultimately a function of their quality and physiological condition upon relaying and it has been recognised that mussels can suffer from a loss in condition following transportation. We investigated whether the process of being transported to ongrowing plots had a negative effect on the physiological health and resultant behaviour of mussels by simulating transportation conditions in a controlled experiment. Mussels were kept, out of water, in plastic piping to recreate translocation conditions and further, we tested if depth held in a ship hold (0, 1.5 and 3 m) and length of time emersed (12, 24 and 48 h) affected mussel condition and behaviour. Physiological condition was assessed by quantifying mussel tissue pH and whole tissue glucose, glycogen, succinate and propionate concentrations. The rate of byssogenesis was also quantified to estimate recovery following a period of re-immersion. The depth at which mussels were held did not affect any of the physiological indicators of mussel stress but short-term byssus production was affected. Mussels held at 3 m produced fewer byssus threads during the first 72 h following re-immersion compared with mussels at 0 m (i.e. not buried) suggesting that depth held can impede recovery following transportation. Duration of emersion affected all stress indicators. Specifically, mussels held out of water for 48 h had a reduced physiological condition compared with those emersed for just 12 h. This work has practical implications for the benthic cultivation industry and based on these results we recommend that mussels are held out of water for less than 24 h prior to relaying to ensure physiological health and resultant condition is preserved.
Resumo:
Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.
Resumo:
Biodiesel derived from microalgae is one of a suite of potential solutions to meet the increasing demand for a renewable, carbon-neutral energy source. However, there are numerous challenges that must be addressed before algae biodiesel can become commercially viable. These challenges include the economic feasibility of harvesting and dewatering the biomass and the extraction of lipids and their conversion into biodiesel. Therefore, it is essential to find a suitable extraction process given these processes presently contribute significantly to the total production costs which, at this stage, inhibit the ability of biodiesel to compete financially with petroleum diesel. This study focuses on pilot-scale (100 kg dried microalgae) solvent extraction of lipids from microalgae and subsequent transesterification to biodiesel. Three different solvents (hexane, isopropanol (IPA) and hexane + IPA (1:1)) were used with two different extraction methods (static and Soxhlet) at bench-scale to find the most suitable solvent extraction process for the pilot-scale. The Soxhlet method extracted only 4.2% more lipid compared to the static method. However, the fatty acid profiles of different extraction methods with different solvents are similar, suggesting that none of the solvents or extraction processes were biased for extraction of particular fatty acids. Considering the cost and availability of the solvents, hexane was chosen for pilot-scale extraction using static extraction. At pilot-scale the lipid yield was found to be 20.3% of total biomass which is 2.5% less than from bench scale. Extracted fatty acids were dominated by polyunsaturated fatty acids (PUFAs) (68.94±0.17%) including 47.7±0.43 and 17.86±0.42% being docosahexaenoic acid (DHA) (C22:6) and docosapentaenoic acid (DPA) (C22:5, ω-3), respectively. These high amounts of long chain poly unsaturated fatty acids are unique to some marine microalgae and protists and vary with environmental conditions, culture age and nutrient status, as well as with cultivation process. Calculated physical and chemical properties of density, viscosity of transesterified fatty acid methyl esters (FAMEs) were within the limits of the biodiesel standard specifications as per ASTM D6751-2012 and EN 14214. The calculated cetane number was, however, significantly lower (17.8~18.6) compared to ASTM D6751-2012 or EN 14214-specified minimal requirements. We conclude that the obtained microalgal biodiesel would likely only be suitable for blending with petroleum diesel to a maximum of 5 to 20%.
Resumo:
Dewatering of microalgal culture is a major bottleneck towards the industrial-scale processing of microalgae for bio-diesel production. The dilute nature of harvested microalgal cultures poses a huge operation cost to dewater; thereby rendering microalgae-based fuels less economically attractive. This study explores the influence of microalgal growth phases and intercellular interactions during cultivation on dewatering efficiency of microalgae cultures. Experimental results show that microalgal cultures harvested during a low growth rate phase (LGRP) of 0.03 d-1 allowed a higher rate of settling than those harvested during a high growth rate phase (HGRP) of 0.11 d-1, even though the latter displayed a higher average differential biomass concentration of 0.2 g L-1 d-1. Zeta potential profile during the cultivation process showed a maximum electronegative value of -43.2 ± 0.7 mV during the HGRP which declined to stabilization at -34.5 ± 0.4 mV in the LGRP. The lower settling rate observed for HGRP microalgae is hence attributed to the high stability of the microalgal cells which electrostatically repel each other during this growth phase. Tangential flow filtration of 20 L HGRP culture concentrated 23 times by consuming 0.51 kWh/m3 of supernatant removed whilst 0.38 kWh/m3 was consumed to concentrate 20 L of LGRP by 48 times.
Resumo:
Biopulping being less energy intensive, inexpensive and causing lesser pollution, can be a viable alternative to chemical and mechanical pulping in paper and pulp industry. In view of shrinking forest reserves, agricultural residues are considered as an alternative raw material for making paper and board. By suitable treatment agriwaste can be converted into substrate for mushroom cultivation. Mushrooms of Pleurotus sp. can preferentially remove lignin from agriwaste with limited degradation to cellulose. The present study examines utilization of Pleurotus eous for biopulping of paddy straw by solid substrate fermentation. SMS, the mushroom growing medium that results from cultivation process, is a good source of fibre and can be pulped easily. Ligninases present in SMS were able to reduce lignin content to nearly half the initial amount by 21st day of cultivation. Highest cellulose content (% dry weight) was observed on 21st day, while cellulase production commenced from 28th day of cultivation. SEM images revealed that SMS fibres are still associated with non-cellulosic materials when compared to chemically (20% w/v NaOH) extracted fibres.
Resumo:
Kurzfassung: Der Markt für ökologische Lebensmittel wächst stark. Verbraucher kaufen Produkte aus ökologischem Landbau aus einer Vielzahl von Gründen. Ein Teil dieser Gründe lässt sich nicht auf die Produktqualität zurückführen, sondern beruht auf der Annahme, dass sich der Produktionsprozess des Ökologischen Landbaus hinsichtlich der Schonung von Umweltressourcen, der Nachhaltigkeit der Produktion und sozialen Komponenten vom konventionellen Anbau unterscheidet. Daneben spielt der Wunsch nach einer gesunden Ernährung eine Rolle. Ökologische Lebensmittel können als Vertrauensgüter verstanden werden. Lebensmittelskandale machten in den vergangenen Jahren auch vor ökologischen Lebens¬mitteln nicht Halt. Folgerichtig erschütterte dies das Vertrauen der Verbraucher in ökologische Produkte. Mit steigender Produktion könnte die Gefahr, das weitere solche Ereignisse auftreten, steigen. Daher besteht Bedarf für Methoden, die die ökologische Produktqualität im Sinne einer Authentizitätsprüfung prüfen. Eine solche Prüfung könnte sich auf die Analyse sekundärer Pflanzenstoffe stützen. Diese Gruppe von Pflanzeninhaltsstoffen spielt bei der Diskussion um die besondere Qualität ökologischer Pflanzenprodukte eine große Rolle. Postuliert wird, dass ökologisch angebaute Pflanzen mangels mineralischer Düngung und mangels Schädlingsbekämpfung mit synthetischen Pestiziden einem erhöhten Stress ausgesetzt sind. Dies soll sich in einem höheren Niveau der mit den Selbstverteidigungsmechanismen der Pflanze eng verbundenen sekundären Pflanzenstoffe ausdrücken. Wichtige Untergruppen der sekundären Pflanzenstoffe sind Carotinoide und Polyphenole. An Weizen (Triticum aestivum L. und Triticum durum L.) und Möhre (Daucus carota L.) als für den ökologischen Landbau wichtigen Produkten wurden Messungen der Carotinoid- und Polyphenolkonzentration mit dem Ziel durchgeführt, die potentielle Eignung dieser Pflanzenstoffe als Biomarker zur Authentizitätsprüfung ökologischer Produkte zu evaluieren. Dazu wurden Proben aus ökologischem und konventionellem Anbau (Paarvergleich) untersucht. Diese stammten aus Langzeit-Feldversuchen (Weizen aus dem DOK- und dem MASCOT-Versuch), Feldversuchen und von Betriebspaaren untersucht. Ein generell höheres Niveau sekundärer Pflanzenstoffe in Möhren bzw. Weizen aus ökologischem Anbau gegenüber Proben aus konventionellem Anbau wurde nicht gefunden. Die Carotinoide waren weder bei der Möhre noch beim Weizen zur Authentizitätsprüfung geeignet. Die Konzentration der Carotinoide wurde stark durch die nicht dem Anbau¬verfahren zuzuordnenden Faktoren Klima, Sorte und Standort beeinflusst. Die Luteinkonzentration war das einzige durch das Anbauverfahren systematisch beeinflusste Carotenoid bei Weizen und Möhre. Die Unterschiede der Luteinkonzentration waren aber im Paarvergleich von Proben (ökologischer versus konventioneller Anbau) nicht durchgängig signifikant. Die Eignung von Polyphenolen als potentielles Authentizitätskriterium wurde nur an Möhren geprüft. Im Paarvergleich unterschieden sich die Konzentrationen einzelner Polyphenole signifikant und konsistent über Probenjahre und Standorte, nicht jedoch über Sorten hinweg. Wie bei den Carotinoiden konnte auch hier ein starker Einfluss von Probenjahr, Standort und Sorte gezeigt werden. Trotz der Variation durch diese nicht dem Anbau zuzuordnenden Faktoren war eine korrekte Klassifizierung der Proben nach Anbauverfahren möglich. Dies wurde mittels Diskriminanzanalyse getestet. Die Polyphenole sind daher potentiell als Authentizitätskriterium geeignet.
Resumo:
A partir del proyecto macro “Municipio Saludable y Polo de Desarrollo Local” se desarrolló un trabajo de campo en el Municipio de Sesquilé, centrado principalmente en el sector agrícola, en donde se identificaron ciertas características en el proceso de cultivo ejecutado por los agricultores de la zona. Dichas características dejan ver que se está subutilizando la capacidad de cultivos, así como la necesidad de cambio y/o diversificación de los productos cosechados, mostrándose esto último como una gran oportunidad para el crecimiento del sector y por ende una nueva forma de generación de empleos. Es importante resaltar que el sector tiene una gran capacidad para el crecimiento agrícola por todos los factores naturales con los que cuenta, por lo que la identificación de nuevas alternativas de cultivos podrían tomarse como ejemplo por otras zonas para su implementación, lo que permitiría fortalecer el sector en otros municipios de Cundinamarca y convertir a Sesquilé en unos de los municipios con mayor desarrollo agrícola.
Resumo:
The viability of the utilization of wood and agroindustrial residues available in the Amazon region in the formulation of alternative substrates for the cultivation of Pleurotus ostreatus was tested. Thus, two wood residues: marupa sawdust (SIAMP) and pau-de-balsa sawdust (SAPB), and two substrates derived from agroindustrial residues: sugar-cane bagasse (SIACN) and pupunheira stem (SIAPP), were used. These were supplemented with a mixture of rice bran, wheat and corn as protein source, with addition of 2-3% of CaCO(3) for pH correction (6.5). The substrates were placed in polyethylene (HDPE) bags, sterilized at 121 degrees C for 1h and inoculated in a laminar flow chamber. The cultivation was carried out in an axenic way, in a modified atmosphere. The productivity of the substrates was evaluated in relation to the biological efficiency, with the following mean results: 125.60, 99.80%, 94.00 and 64.60% for SIAPP, SIACN, SIAMP and SIAPB, respectively. The high biological efficiency of the substrates and the cultivation process clearly showed the viability of the utilization of the residues, suggesting the commercial cultivation of this mushroom, which may contribute for improving the social and economical conditions and sustainability of the regional biodiversity resources of Amazonia.
Resumo:
Batch cultivation for transgenic kelp gametophyte cells was investigated in an online controlled 5 L stirred-tank photo-bioreactor to rapidly optimize the process conditions by monitoring the rate of increase of pH. The transgenic kelp gametophytes with heterologous gene encoding hepatitis B surface antigen (HBsAg) could rapidly grow in the bioreactor. Optimal temperature and agitation rate for bioreactor cultivation of gametophytes were 15 degrees C and 200 rpm. Optimal incident light intensities depended on the initial cell densities. (c) 2006 Elsevier B.V. All fights reserved.
Resumo:
The research was aimed at developing a technology to combine the production of useful microfungi with the treatment of wastewater from food processing. A recycle bioreactor equipped with a micro-screen was developed as a wastewater treatment system on a laboratory scale to contain a Rhizopus culture and maintain its dominance under non-aseptic conditions. Competitive growth of bacteria was observed, but this was minimised by manipulation of the solids retention time and the hydraulic retention time. Removal of about 90% of the waste organic material (as BOD) from the wastewater was achieved simultaneously. Since essentially all fungi are retained behind the 100 mum aperture screen, the solids retention time could be controlled by the rate of harvesting. The hydraulic retention time was employed to control the bacterial growth as the bacteria were washed through the screen at a short HRT. A steady state model was developed to determine these two parameters. This model predicts the effluent quality. Experimental work is still needed to determine the growth characteristics of the selected fungal species under optimum conditions (pH and temperature).
Resumo:
A method of selecting land in any region of Queensland for offsetting purposes is devised, employing uniform standards. The procedure first requires that any core natural asset lands, Crown environmental lands, prime urban and agricultural lands, and highly contentious sites in the region be eliminated from consideration. Other land is then sought that is located between existing large reservations and the centre of greatest potential regional development/disturbance. Using the criteria of rehabilitation (rather than preservation) plus proximity to those officially defined Regional Ecosystems that are most threatened, adjacent sites that are described as ‘Cleared’ are identified in terms of agricultural land capability. Class IV lands – defined as those ‘which may be safely used for occasional cultivation with careful management’,2 ‘where it is favourably located for special usage’,3 and where it is ‘helpful to those who are interested in industry or regional planning or in reconstruction’4 – are examined for their appropriate area, for current tenure and for any conditions such as Mining Leases that may exist. The positive impacts from offsets on adjoining lands can then be designed to be significant; examples are also offered in respect of riparian areas and of Marine Parks. Criteria against which to measure performance for trading purposes include functional lift, with other case studies about this matter reported separately in this issue. The procedure takes no account of demand side economics (financial additionality), which requires commercial rather than environmental analysis.
Resumo:
We have presently evaluated membranes prepared from Bombyx mori silk fibroin (BMSF), for their potential use as a prosthetic Bruch’s membrane and carrier substrate for human retinal pigment epithelial (RPE) cell transplantation. Porous BMSF membranes measuring 3 μm in thickness were prepared from aqueous solutions (3% w/v) containing poly(ethylene oxide) (0.09%). The permeability coefficient for membranes was between 3 and 9 × 10-5 cm/s by using Allura red or 70 kDa FITC-dextran respectively. Average pore size (± sd) was 4.9 ± 2.3 µm and 2.9 ± 1.5 µm for upper and lower membrane surfaces respectively. Optimal attachment of ARPE-19 cells to BMSF membrane was achieved by pre-coating with vitronectin (1 µg/mL). ARPE-19 cultures maintained in low serum on BMSF membranes for approximately 8 weeks, developed a cobble-stoned morphology accompanied by a cortical distribution of F-actin and ZO-1. Similar results were obtained using primary cultures of human RPE cells, but cultures took noticeably longer to establish on BMSF compared with tissue culture plastic. These findings encourage further studies of BMSF as a substrate for RPE cell transplantation.
Resumo:
The Beauty Leaf tree (Calophyllum inophyllum) is a potential source of non-edible vegetable oil for producing future generation biodiesel because of its ability to grow in a wide range of climate conditions, easy cultivation, high fruit production rate, and the high oil content in the seed. This plant naturally occurs in the coastal areas of Queensland and the Northern Territory in Australia, and is also widespread in south-east Asia, India and Sri Lanka. Although Beauty Leaf is traditionally used as a source of timber and orientation plant, its potential as a source of second generation biodiesel is yet to be exploited. In this study, the extraction process from the Beauty Leaf oil seed has been optimised in terms of seed preparation, moisture content and oil extraction methods. The two methods that have been considered to extract oil from the seed kernel are mechanical oil extraction using an electric powered screw press, and chemical oil extraction using n-hexane as an oil solvent. The study found that seed preparation has a significant impact on oil yields, especially in the screw press extraction method. Kernels prepared to 15% moisture content provided the highest oil yields for both extraction methods. Mechanical extraction using the screw press can produce oil from correctly prepared product at a low cost, however overall this method is ineffective with relatively low oil yields. Chemical extraction was found to be a very effective method for oil extraction for its consistence performance and high oil yield, but cost of production was relatively higher due to the high cost of solvent. However, a solvent recycle system can be implemented to reduce the production cost of Beauty Leaf biodiesel. The findings of this study are expected to serve as the basis from which industrial scale biodiesel production from Beauty Leaf can be made.
Resumo:
Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.