999 resultados para Cuckoo search


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a comparative study is carried using three nature-inspired algorithms namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) on clustering problem. Cuckoo search is used with levy flight. The heavy-tail property of levy flight is exploited here. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results are tabulated and analysed using various techniques. Finally we conclude that under the given set of parameters, cuckoo search works efficiently for majority of the dataset and levy flight plays an important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates a new approach for solving the multiobjective job shop scheduling problem, namely the Cuckoo Search ( CS) approach. The requirement is to schedule jobs on a single machine so that the total material waste is minimised as well as the total tardiness time. The material waste is quantified in terms of saving factors to show the reduction in material that can be achieved when producing two jobs with the same materials in sequence. The estimated saving factor is used to calculate a cost savings for each job based on its material type. A formulation of multiobjective optimisation problems is adopted to generate the set of schedules that maximise the overall cost savings and minimise the total tardiness time. where all trade-offs are considered for the two conflicting objectives. A Pareto Archived Multiobjective Cuckoo Search (PAMOCS) is developed to find the set ofnondominated Pareto optimal solutions. The solution accuracy of PAMOCS is shown by comparing the closeness of the obtained solutions to the true Pareto front generated by the complete enumeration methad. Results shaw that CS is a very effective and promising technique to solve job shop scheduling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cuckoo search (CS) is a relatively new meta-heuristic that has proven its strength in solving continuous optimization problems. This papers applies cuckoo search to the class of sequencing problems by hybridizing it with a variable neighborhood descent local search for enhancing the quality of the obtained solutions. The Lévy flight operator proposed in the original CS is modified to address the discrete nature of scheduling problems. Two well-known problems are used to demonstrate the effectiveness of the proposed hybrid CS approach. The first is the NP-hard single objective problem of minimizing the weighted total tardiness time (Formula presented.) and the second is the multiobjective problem of minimizing the flowtime ¯ and the maximum tardiness Tmaxfor single machine (Formula presented.). For the first problem, computational results show that the hybrid CS is able to find the optimal solutions for all benchmark test instances with 40, 50, and 100 jobs and for most instances with 150, 200, 250, and 300 jobs. For the second problem, the hybrid CS generated solutions on and very close to the exact Pareto fronts of test instances with 10, 20, 30, and 40 jobs. In general, the results reveal that the hybrid CS is an adequate and robust method for tackling single and multiobjective scheduling problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wide variety of evolutionary optimization algorithms have been used by researcher for optimal design of shell and tube heat exchangers (STHX). The purpose of optimization is to minimize capital and operational costs subject to efficiency constraints. This paper comprehensively examines performance of genetic algorithm (GA) and cuckoo search (CS) for solving STHX design optimization. While GA has been widely adopted in the last decade for STHX optimal design, there is no report on application of CS method for this purpose. Simulation results in this paper demonstrate that CS greatly outperforms GA in terms of finding admissible and optimal configurations for STHX. It is also found that CS method not only has a lower computational requirement, but also generates the most consistent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traffic congestion in urban roads is one of the biggest challenges of 21 century. Despite a myriad of research work in the last two decades, optimization of traffic signals in network level is still an open research problem. This paper for the first time employs advanced cuckoo search optimization algorithm for optimally tuning parameters of intelligent controllers. Neural Network (NN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are two intelligent controllers implemented in this study. For the sake of comparison, we also implement Q-learning and fixed-time controllers as benchmarks. Comprehensive simulation scenarios are designed and executed for a traffic network composed of nine four-way intersections. Obtained results for a few scenarios demonstrate the optimality of trained intelligent controllers using the cuckoo search method. The average performance of NN, ANFIS, and Q-learning controllers against the fixed-time controller are 44%, 39%, and 35%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optimal design of Adaptive Neuro-Fuzzy Inference System (ANFIS) traffic signal controller is presented in this paper. The proposed controller aims to adjust a set of green times for traffic lights in a single intersection with the purpose of minimizing travel delay time and traffic congestion. The ANFIS controller is trained, to learned how to set green times for each traffic phase. This intelligent controller uses the Cuckoo Search (CS) algorithm to tune its parameters during the learning pried. Evaluating the performance of the proposed controller in comparison with the performance of a FLS controller (FLC) with predefined rules and membership functions, and also three fixed-Time controllers, illustrates the better performance of the optimal ANFIS controller against the other benchmark controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on designing an adaptive controller for controlling traffic signal timing. Urban traffic is an inevitable part in modern cities and traffic signal controllers are effective tools to control it. In this regard, this paper proposes a distributed neural network (NN) controller for traffic signal timing. This controller applies cuckoo search (CS) optimization methods to find the optimal parameters in design of an adaptive traffic signal timing control system. The evaluation of the performance of the designed controller is done in a multi-intersection traffic network. The developed controller shows a promising improvement in reducing travel delay time compared to traditional fixed-time control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feature selection has been actively pursued in the last years, since to find the most discriminative set of features can enhance the recognition rates and also to make feature extraction faster. In this paper, the propose a new feature selection called Binary Cuckoo Search, which is based on the behavior of cuckoo birds. The experiments were carried out in the context of theft detection in power distribution systems in two datasets obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques. © 2013 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Metaheuristic algorithm is one of the most popular methods in solving many optimization problems. This paper presents a new hybrid approach comprising of two natures inspired metaheuristic algorithms i.e. Cuckoo Search (CS) and Accelerated Particle Swarm Optimization (APSO) for training Artificial Neural Networks (ANN). In order to increase the probability of the egg’s survival, the cuckoo bird migrates by traversing more search space. It can successfully search better solutions by performing levy flight with APSO. In the proposed Hybrid Accelerated Cuckoo Particle Swarm Optimization (HACPSO) algorithm, the communication ability for the cuckoo birds have been provided by APSO, thus making cuckoo bird capable of searching for the best nest with better solution. Experimental results are carried-out on benchmarked datasets, and the performance of the proposed hybrid algorithm is compared with Artificial Bee Colony (ABC) and similar hybrid variants. The results show that the proposed HACPSO algorithm performs better than other algorithms in terms of convergence and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper comprehensively investigates performance of evolutionary algorithms for design optimization of shell and tube heat exchangers (STHX). Genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) method are implemented for finding the optimal values for seven key design variables of the STHX model. ε-NTU method and Bell-Delaware procedure are used for thermal modeling of STHX and calculation of shell side heat transfer coefficient and pressure drop. The purpose of STHX optimization is to maximize its thermal efficiency. Obtained results for several simulation optimizations indicate that GA is unable to find permissible and optimal solutions in the majority of cases. In contrast, design variables found by FA and CS always lead to maximum STHX efficiency. Also computational requirements of CS method are significantly less than FA method. As per optimization results, maximum efficiency (83.8%) can be achieved using several design configurations. However, these designs are bearing different dollar costs. Also it is found that the behavior of the majority of decision variables remains consistent in different runs of the FA and CS optimization processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)