973 resultados para Csa Activity Monitor
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
Purpose The purpose of this study was to evaluate age and gender differences in objectively measured physical activity (PA) in a population-based sample of students in grades 1–12. Methods Participants (185 male, 190 female) wore a CSA 7164 accelerometer for 7 consecutive days. To examine age-related trends, students were grouped as follows: grades 1–3 (N = 90), grades 4–6 (N = 91), grades 7–9 (N = 96), and grades 10–12 (N = 92). Bouts of PA and minutes spent in moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) were examined. Results Daily MVPA and VPA exhibited a significant inverse relationship with grade level, with the largest differences occurring between grades 1–3 and 4–6. Boys were more active than girls; however, for overall PA, the magnitudes of the gender differences were modest. Participation in continuous 20-min bouts of PA was low to nonexistent. Conclusion Our results support the notion that PA declines rapidly during childhood and adolescence and that accelerometers are feasible alternatives to self-report methods in moderately sized population-level surveillance studies.
Resumo:
Purpose The purpose of this review is to address important methodological issues related to conducting accelerometer-based assessments of physical activity in free-living individuals. Methods We review the extant scientific literature for empirical information related to the following issues: product selection, number of accelerometers needed, placement of accelerometers, epoch length, and days of monitoring required to estimate habitual physical activity. We also discuss the various options related to distributing and collecting monitors and strategies to enhance compliance with the monitoring protocol. Results No definitive evidence exists currently to indicate that one make and model of accelerometer is more valid and reliable than another. Selection of accelerometer therefore remains primarily an issue of practicality, technical support, and comparability with other studies. Studies employing multiple accelerometers to estimate energy expenditure report only marginal improvements in explanatory power. Accelerometers are best placed on hip or the lower back. Although the issue of epoch length has not been studied in adults, the use of count cut points based on 1-min time intervals maybe inappropriate in children and may result in underestimation of physical activity. Among adults, 3–5 d of monitoring is required to reliably estimate habitual physical activity. Among children and adolescents, the number of monitoring days required ranges from 4 to 9 d, making it difficult to draw a definitive conclusion for this population. Face-to-face distribution and collection of accelerometers is probably the best option in field-based research, but delivery and return by express carrier or registered mail is a viable option. Conclusion Accelerometer-based activity assessments requires careful planning and the use of appropriate strategies to increase compliance.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
The purpose of this study was to examine the validity of the 3-Day Physical Activity Recall (3DPAR) self-report instrument in a sample of eighth and ninth grade girls (n = 70, 54.3% white, 37.1% African American). Criterion measures of physical activity were derived using the CSA 7164 accelerometer. Participants wore a CSA monitor for 7 consecutive days and completed the self-report physical activity recall for the last 3 of those days. Self-reported total METs, 30-min blocks of MVPA, and 30-min blocks of VPA were all significantly correlated with analogous CSA variables for 7 days (r = 0.35-0.51; P < 0.01) and 3 days (r = 0.27-0.46; P < 0.05) of monitoring. The results indicate that the 3DPAR is a valid instrument for assessing overall, vigorous, and moderate to vigorous physical activity in adolescent girls.
Resumo:
The unique physical and movement characteristics of children necessitate the development of accelerometer equations and cut points that are population specific. The purpose of this study is to develop an ecologically valid cut point for the Biotrainer Pro monitor that reflects a threshold for moderate-intensity physical activity in elementary school children. A sample of 30 children (ages 8-12) wore a Biotrainer monitor while completing a series of 7 movement tasks (calibration phase) and while participating in an organized group activity (cross-validation phase). Videotapes from each session were processed using a computerized direct-observation technique to provide a criterion measure of physical activity. Analyses involved the use of mixed-model regression and receiver operator characteristic (ROC) curves. The results indicated that a cut point of 4 counts/min provides the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of activity as inactivity). Results with the cross-validation data demonstrated that this value yielded the best overall kappa (.58) and a high classification agreement (84%) for activity determination. The specificity of 93% demonstrates that the proposed cut point can accurately detect activity; however, the lower sensitivity value of 61% suggests that some minutes of activity might be incorrectly classified as inactivity. The cut point of 4 counts/min provides an ecologically valid cut point to capture physical activity in children using the Biotrainer Pro activity monitor.
Resumo:
PURPOSE To use objective monitoring of physical activity to determine the percentages of children and youth in a population that met physical activity guidelines. METHODS A total of 375 students in grades 1–12 wore an accelerometer (CSA 7164) for seven consecutive days. Bouts of continuous activity and accumulation of minutes spent in physical activity at various intensities were calculated to determine how many students met three physical activity guidelines. RESULTS Over 90% of students met Healthy People 2010, Objective 22.6 and nearly 70% met the United Kingdom Expert Consensus Group guideline, both of which recommend daily accumulation of moderate physical activity. Less than 3% met Healthy People 2010, Objective 22.7, which calls for bouts of continuous vigorous physical activity. For the United Kingdom Expert Consensus Group guideline, compliance decreased markedly with age, but gender differences were not statistically significant. CONCLUSIONS Prevalence estimates for compliance with national physical activity guidelines varied markedly for the three guidelines examined. Objective monitoring of physical activity in youth appears to be feasible and may provide more accurate prevalence rates than self-report measures.
Resumo:
BACKGROUND: The new generation of activity monitors allow users to upload their data to the internet and review progress. The aim of this study is to validate the Fitbit Zip as a measure of free-living physical activity.
FINDINGS: Participants wore a Fitbit Zip, ActiGraph GT3X accelerometer and a Yamax CW700 pedometer for seven days. Participants were asked their opinion on the utility of the Fitbit Zip. Validity was assessed by comparing the output using Spearman's rank correlation coefficients, Wilcoxon signed rank tests and Bland-Altman plots. 59.5% (25/47) of the cohort were female. There was a high correlation in steps/day between the Fitbit Zip and the two reference devices (r = 0.91, p < 0.001). No statistically significant difference between the Fitbit and Yamax steps/day was observed (Median (IQR) 7477 (3597) vs 6774 (3851); p = 0.11). The Fitbit measured significantly more steps/day than the Actigraph (7477 (3597) vs 6774 (3851); p < 0.001). Bland-Altman plots revealed no systematic differences between the devices.
CONCLUSIONS: Given the high level of correlation and no apparent systematic biases in the Bland Altman plots, the use of Fitbit Zip as a measure of physical activity. However the Fitbit Zip recorded a significantly higher number of steps per day than the Actigraph.
Resumo:
Purpose: To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods: Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results: Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions: Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.
Resumo:
In order to effectively measure the physical activity of children, objective monitoring devices must be able to quantify the intermittent and nonlinear movement of free play. The purpose of this study was to investigate the validity of the Computer Science and Applications (CSA) uniaxial accelerometer and the TriTrac-R3D triaxial accelerometer with respect to their ability to measure 8 "free-play" activities of different intensity. The activities ranged from light to very vigorous in intensity and included activities such as throwing and catching, hopscotch, and basketball. Twenty-eight children, ages 9 to 11, wore a CSA and a heart rate monitor while performing the activities. Sixteen children also wore a Tritrac. Counts from the CSA, Tritrac, and heart rates corresponding to the last 3 min of the 5 min spent at each activity were averaged and used in correlation analyses. Across all 8 activities, Tritrac counts were significantly correlated with predicted MET level (r= 0.69) and heart rate (r= 0.73). Correlations between CSA output, predicted MET level (0.43), and heart rate (0.64) were also significant but were lower than those observed for the Tritrac. These data indicate that accelerometers are an appropriate methodology for measuring children's free-play physical activities.
Resumo:
This study evaluated the validity of the Previous Day Physical Activity Recall (PDPAR) self-report instrument in quantifying after-school physical activity behavior in fifth-grade children. Thirty-eight fifth-grade students (mean age, 10.8 +/- 0.1; 52.6% female; 26.3% African American) from two urban elementary schools completed the PDPAR after wearing a CSA WAM 7164 accelerometer for a day. The mean within-subject correlation between self-reported MET level and total counts for each 30-min block was 0.57 (95% C.I., 0.51-0.62). Self-reported mean MET level during the after-school period and the number of 30-min blocks with activity rated at greater than or equal to 6 METs were significantly correlated with the CSA outcome variables. Validity coefficients for these variables ranged from 0.35 to 0.43 (p <.05). Correlations between the number of 30-min blocks with activity rated at greater than or equal to 3 METs and the CSA variables were positive but failed to reach statistical significance (r = 0.19-0.23). The PDPAR provides moderately valid estimates of relative participation in vigorous activity and mean MET level in fifth-grade children. Caution should be exercised when using the PDPAR to quantify moderate physical activity in preadolescent children.