950 resultados para Crystallography of Polycrystals
Resumo:
The effect of growth texture on the magnetostriction of ternary Tb0.3Dy0.7Fe1.95 was studied by conducting unidirectional solidification experiments using a zoning set-up. Detailed texture evolutions were studied using X-ray diffraction on samples obtained by varying growth rates from 18 to 72 cm/h, under a temperature gradient of 100 degrees C/cm. The estimated texture co-efficient and pole figures of the samples indicate that during the onset of the solidification, < 110 > and < 331 >/'rotated < 110 >' texture components nucleate and grow in all the samples. However, as the solidification progresses, < 112 > texture component becomes dominant at higher growth rate. This results in an improvement of magnetostriction from 1000 to 1300 microstrains for samples grown at growth rates of 18 and 72 cm/h respectively. The transition of preferred growth direction occurs through intermediate orientations < 123 >. An attempt has been made in this paper to explain the occurrence of different growth texture by considering the stability of growing interface, its planar packing fraction and atomic stacking sequence of several low index planes. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
he crystallographic and morphological aspect associated with the formation of γ hydride phase (fct) from the β phase in β abilized Zr-20%Nb alloy has been reported. In this paper the βto γ transformation has been considered in the terms of the phenomenological theory of martensitic crystallography in order to predict the crystallographic features of the γ hydride in the β to γ transformation. The prediction made in the present analysis has been found to match very closely to the experimentally observed habit plane. The possibility of the α to γ transition through the formation of a transient β configuration has been examined.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Orientation relationships between Mg24Y5 precipitates and matrix in a Mg-Y alloy were accurately determined using Kikuchi line diffraction. The Burgers relationship with habit planes of {10 (1) over bar0}(H) and {31 (4) over bar0}(H) were observed for all precipitates. Compared with the Mg17Al12 precipitate in AZ91, the precipitation hardening effect in this alloy was significantly increased. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Precipitation morphology and habit planes of the delta-phase Zr hydrides, which were precipitated within the a-phase matrix grains and along the grain boundaries of recrystallized Zircaloy-2 cladding tube, have been examined by electron backscatter diffraction (EBSD). Radially-oriented hydrides, induced by residual tensile stress, precipitated in the outside region of the cladding, and circumferentially-oriented hydrides in the stress-free middle region of the cladding. The most common crystallographic relationship for both types of the hydrides precipitated at the inter- and intra-granular sites was identical at (0001)(alpha) // {111}(delta), with {1017}(alpha) // {111}(delta) being the occasional exception only for the inter-granular radial hydrides. When tensile stress was loaded, the intra-granular hydrides tended to preferentially precipitate in the grains with circumferential basal pole textures. The inter-granular hydrides tended to preferentially precipitate on the grain faces opposite to tensile axis. The change of prioritization in the precipitation sites for the hydrides due to tensile stress could be explained in terms of the relaxation effect of constrained elastic energy on the terminal solid solubility of hydrogen at hydride precipitation.
Resumo:
The orientation relationship (OR) between the beta(Zn) phase and the alpha(Al) phase and the corresponding habit planes in a Zn-Al eutectoid alloy were accurately determined using convergent beam Kikuchi line diffraction patterns. In addition to the previously reported OR. [11 (2) over bar0](beta)parallel to[110](alpha), (0002)(beta)parallel to ((1) over bar 11)alpha, two new ORs were observed. They are: [11 (2) over bar0](beta)parallel to [110], ((1) over bar 101)(beta) 0.82 degrees from (002)(alpha) and [(1) over bar 100](beta)parallel to[112](alpha), (0002)(beta) 4.5 degrees from (111)(alpha). These ORs can be explained and understood using the recently developed edge-to-edge matching model. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.