886 resultados para Crystal quartz


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parmi la grande quantité de témoins culturels découverts sur le site Droulers/Tsiionhiakwatha (BgFn-1), la pierre taillée et polie forme un assemblage bien modeste. Les Iroquoiens de Droulers ont habité un village semi-permanent daté du Sylvicole supérieur, plus précisément entre l’an 1430 et 1500 ap. J.-C. Ils ont fabriqués des grattoirs, des pointes de flèches, des forets, des polissoirs et des meules à mains, en plus d’outils en quartz hyalin dont la fonction n’est pas bien définie. Parmi les 3595 objets lithiques, nous trouvons 18 outils et 1085 déchets de taille en cristal, ce qui représente près de 30% du total. Le quartz hyalin fut utilisé durant la préhistoire québécoise, mais jamais en aussi grande quantité que sur Droulers. Nous présentons la chaîne opératoire du quartz hyalin, de son extraction à son rejet sur les sites archéologiques. Nous explorons également son utilisation et sa symbolique chez les habitants du village Droulers, une enquête basée sur des données archéologiques et ethnographiques des Amérindiens actuels et de ceux de la période de Contact du nord-est de l’Amérique du nord.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports the surface activity of phytase at the air-water interface, its interaction with lipid monolayers, and the construction of a new phytic acid biosensor on the basis of the Langmuir-Blodgett (LB) technique. Phytase was inserted in the subphase solution of dipalmitoylphosphatidylglycerol (DPPG) Langmuir monolayers, and its incorporation to the air-water interface was monitored with surface pressure measurements. Phytase was able to incorporate into DPPG monolayers even at high surface pressures, ca. 30 mN/m, under controlled ionic strength, pH, and temperature. Mixed Langmuir monolayers of phytase and DPPG were characterized by surface pressure-area and surface potential-area isotherms, and the presence of the enzyme provided an expansion in the monolayers ( when compared to the pure lipid at the interface). The enzyme incorporation also led to significant changes in the equilibrium surface compressibility (in-plane elasticity), especially in liquid-expanded and liquid-condensed regions. The dynamic surface elasticity for phytase-containing interfaces was investigated using harmonic oscillation and axisymmetric drop shape analysis. The insertion of the enzyme at DPPG monolayers caused an increase in the dynamic surface elasticity at 30 mN m(-1), indicating a strong interaction between the enzyme and lipid molecules at a high-surface packing. Langmuir-Blodgett (LB) films containing 35 layers of mixed phytase-DPPG were characterized by ultraviolet-visible and fluorescence spectroscopy and crystal quartz microbalance nanogravimetry. The ability in detecting phytic acid was studied with voltammetric measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A measurement device has been developed to measure force and torque components acting on the impeller of a model pump-turbine, which uses crystal quartz load transducers installed on the rotating shaft. These kinds of load transducers allow greater stiffness than arrangements using strain gauges. Therefore, the dynamics behavior of the measurement device has to be taken into account. Some results of measurements are present in the whole operating range of model pump-turbine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Identification of a sediment/basement contact using seismic reflection recordings has proven to be extremely difficult in wide areas of the North Pacific Ocean owing to the presence of massive, highly reflective chert layers within the sediment column. Leg 136 of the Ocean Drilling Program recovered coherent pieces of chert of sufficient size for the first comprehensive laboratory measurements of the seismic properties of this material. Compressional-wave velocities of six samples at 40-MPa confining pressure averaged 5.33 km/s, whereas shear-wave velocities at the same pressure averaged 3.48 km/s. Velocities were independent of porosity, which ranged from 5% to 13%, suggesting that pores within the samples were mostly high aspect ratio vugs as opposed to low aspect ratio cracks. Back-scattered electron images made with a scanning electron microscope confirmed this observation. Acoustic impedances were calculated for the chert samples and from shipboard measurements of the red clay sediment overlying the chert layers. An extremely large compressional-wave reflection coefficient (0.73) characterized the interface between the two lithologies. A synthetic seismogram was calculated using chert and typical pelagic carbonate properties to illustrate the influence of chert layers on a marine seismic-reflection section. Compressional-wave to shear-wave velocity ratios of the chert samples (Vp/Vs =1.53) are close to that of single-crystal quartz in spite of variable porosity. Shear-wave reflection coefficients are estimated to be approximately 0.94. A compressional-wave reflection coefficient for a basement/sediment (carbonate) interface is estimated to be approximately 0.50, significantly less than that of sediment/chert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Unique electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) have made them one of the most promising candidates for next-generation nanoelectronics. Efficient utilization of the exceptional properties of SWNTs requires controlling their growth direction (e.g., vertical, horizontal) and morphologies (e.g., straight, junction, coiled). ^ In this dissertation, the catalytic effect on the branching of SWNTs, Y-shaped SWNTs (Y-SWNTs), was investigated. The formation of Y-shaped branches was found to be dependent on the composition of the catalysts. Easier carbide formers have a strong tendency to attach to the sidewall of SWNTs and thus enhance the degree of branching. Y-SWNTs based field-effect transistors (FETs) were fabricated and modulated by the metallic branch of the Y-SWNTs, exhibiting ambipolar characteristics at room temperature. A subthreshold swing of 700 mV/decade and an on/off ratio of 105 with a low off-state current of 10-13 A were obtained. The transport phenomena associated with Y- and cross-junction configurations reveals that the conduction mechanism in the SWNT junctions is governed by thermionic emission at T > 100 K and by tunneling at T < 100 K. ^ Furthermore, horizontally aligned SWNTs were synthesized by the controlled modification of external fields and forces. High performance carbon nanotube FETs and logic circuit were demonstrated utilizing the aligned SWNTs. It is found that the hysteresis in CNTFETs can be eliminated by removing absorbed water molecules on the CNT/SiO2 interface by vacuum annealing, hydrophobic surface treatment, and surface passivation. SWNT “serpentines” were synthesized by utilization of the interaction between drag force from gas flow and Van der Waals force with substrates. The curvature of bent SWNTs could be tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. Resistivity of bent SWNTs was observed to increase with curvature, which can be attributed to local deformations and possible chirality shift at curved part. ^ Our results show the successful synthesis of SWNTs having controllable morphologies and directionality. The capability of tailoring the electrical properties of SWNTs makes it possible to build an all-nanotube device by integrating SWNTs, having different functionalities, into complex circuits. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) have been studied as a prominent class of high performance electronic materials for next generation electronics. Their geometry dependent electronic structure, ballistic transport and low power dissipation due to quasi one dimensional transport, and their capability of carrying high current densities are some of the main reasons for the optimistic expectations on SWNTs. However, device applications of individual SWNTs have been hindered by uncontrolled variations in characteristics and lack of scalable methods to integrate SWNTs into electronic devices. One relatively new direction in SWNT electronics, which avoids these issues, is using arrays of SWNTs, where the ensemble average may provide uniformity from device to device, and this new breed of electronic material can be integrated into electronic devices in a scalable fashion. This dissertation describes (1) methods for characterization of SWNT arrays, (2) how the electrical transport in these two-dimensional arrays depend on length scales and spatial anisotropy, (3) the interaction of aligned SWNTs with the underlying substrate, and (4) methods for scalable integration of SWNT arrays into electronic devices. The electrical characterization of SWNT arrays have been realized by polymer electrolyte-gated SWNT thin film transistors (TFTs). Polymer electrolyte-gating addresses many technical difficulties inherent to electrical characterization by gating through oxide-dielectrics. Having shown polymer electrolyte-gating can be successfully applied on SWNT arrays, we have studied the length scaling dependence of electrical transport in SWNT arrays. Ultrathin films formed by sub-monolayer surface coverage of SWNT arrays are very interesting systems in terms of the physics of two-dimensional electronic transport. We have observed that they behave qualitatively different than the classical conducting films, which obey the Ohm’s law. The resistance of an ultrathin film of SWNT arrays is indeed non-linear with the length of the film, across which the transport occurs. More interestingly, a transition between conducting and insulating states is observed at a critical surface coverage, which is called percolation limit. The surface coverage of conducting SWNTs can be manipulated by turning on and off the semiconductors in the SWNT array, leading to the operation principle of SWNT TFTs. The percolation limit depends also on the length and the spatial orientation of SWNTs. We have also observed that the percolation limit increases abruptly for aligned arrays of SWNTs, which are grown on single crystal quartz substrates. In this dissertation, we also compare our experimental results with a two-dimensional stick network model, which gives a good qualitative picture of the electrical transport in SWNT arrays in terms of surface coverage, length scaling, and spatial orientation, and briefly discuss the validity of this model. However, the electronic properties of SWNT arrays are not only determined by geometrical arguments. The contact resistances at the nanotube-nanotube and nanotube-electrode (bulk metal) interfaces, and interactions with the local chemical groups and the underlying substrates are among other issues related to the electronic transport in SWNT arrays. Different aspects of these factors have been studied in detail by many groups. In fact, I have also included a brief discussion about electron injection onto semiconducting SWNTs by polymer dopants. On the other hand, we have compared the substrate-SWNT interactions for isotropic (in two dimensions) arrays of SWNTs grown on Si/SiO2 substrates and horizontally (on substrate) aligned arrays of SWNTs grown on single crystal quartz substrates. The anisotropic interactions associated with the quartz lattice between quartz and SWNTs that allow near perfect horizontal alignment on substrate along a particular crystallographic direction is examined by Raman spectroscopy, and shown to lead to uniaxial compressive strain in as-grown SWNTs on single crystal quartz. This is the first experimental demonstration of the hard-to-achieve uniaxial compression of SWNTs. Temperature dependence of Raman G-band spectra along the length of individual nanotubes reveals that the compressive strain is non-uniform and can be larger than 1% locally at room temperature. Effects of device fabrication steps on the non-uniform strain are also examined and implications on electrical performance are discussed. Based on our findings, there are discussions about device performances and designs included in this dissertation. The channel length dependences of device mobilities and on/off ratios are included for SWNT TFTs. Time response of polymer-electrolyte gated SWNT TFTs has been measured to be ~300 Hz, and a proof-of-concept logic inverter has been fabricated by using polymer electrolyte gated SWNT TFTs for macroelectronic applications. Finally, I dedicated a chapter on scalable device designs based on aligned arrays of SWNTs, including a design for SWNT memory devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discovering scalable routes to fabricate large scale electronic devices on flexible substrates has been the goal of the newly emerging field of flexible macroelectronics. Thin film transistors (TFTs) have been fabricated on flexible substrates by using organic small-molecule and polymer-based materials, or thin layers of crystalline inorganic semiconductors. Recently, films of carbon nanotubes have been proposed as electronic materials with superior electrical performance due to exceptional electrical and mechanical properties of single-walled carbon nanotubes (SWCNTs). In this thesis, some aspects of recent research efforts on integrating arrays of carbon nanotubes into macroelectronic devices are described. Carbon nanotube films have two major uses for flexible macroelectronics. The first approach uses carbon nanotube thin films as active semiconducting materials in the channel of flexible TFTs. Even though, high-performance carbon nanotube thin film transistors have been realized, the electronic non-homogeneity of the as-grown carbon nanotubes in the film limits the device performance for some applications. In this thesis, the application of electrochemical functionalization on carbon nanotube films to improve the electronic homogeneity of the film is described. The effect of the crystal quartz substrates on the growth rate of carbon nanotubes, and whether this can be used to sort out as-grown carbon nanotubes by electronic type is also discussed. Finally, I argue that high density carbon nanotube films can also be used as highly conducting stretchable interconnects on mechanically flexible electronic circuits. The sheet resistance and the nature of the buckling of carbon nanotube films on flexible substrates are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quartz Crystal Microbalance (QCM) was used to monitor the mass changes on a quartz crystal surface containing immobilized lectins that interacted with carbohydrates. The strategy for lectin immobilization was developed on the basis of a multilayer system composed of Au-cystamine-glutaraldehyde-lectin. Each step of the immobilization procedure was confirmed by FTIR analysis. The system was used to study the interactions of Concanavalin A (ConA) with maltose and Jacalin with Fetuin. The real-time binding of different concentrations of carbohydrate to the immobilized lectin was monitored by means of QCM measurements and the data obtained allowed for the construction of Langmuir isotherm curves. The association constants determined for the specific interactions analyzed here were (6.4 +/- 0.2) X 10(4) M-1 for Jacalin-Fetuin and (4.5 +/- 0.1) x 10(2) M-1 for ConA-maltose. These results indicate that the QCM constitutes a suitable method for the analysis of lectin-carbohydrate interactions, even when assaying low molecular mass ligands such as disaccharides. Published by Elsevier B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon monoxide was detected and determined by a piezoelectric quartz crystal sensor coated with nickel(II)-phthalocyanine 50 % (v/v) solution in glycerine. Studies on the effect of temperature, flow rate, and some possible interferents were carried out. Calibration curves, sensor stability (lifetime) and the precision of measurements were also verified. The resulting selectivity is probably due to the coordinative binding between the electronically unsatured metal complexes and the analyte. The analytical curve is linear in the concentration range 0.10 to 1.0 % (v/v).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanofilm deposits of TiO2 nanoparticle phytates are formed on gold electrode surfaces by 'directed assembly' methods. Alternate exposure of a 3-mercapto-propionic acid modified gold surface to (i) a TiO2 sol and (ii) an aqueous phytic acid solution (pH 3) results in layer-by-layer formation of a mesoporous film. Ru(NH3)(6)(3+) is shown to strongly adsorb/accumulate into the mesoporous structure whilst remaining electrochemically active. Scanning the electrode potential into a sufficiently negative potential range allows the Ru(NH3)(6)(3+) complex to be reduced to Ru(NH3)(6)(2+) which undergoes immediate desorption. When applied to a gold coated quartz crystal microbalance (QCM) sensor, electrochemically driven adsorption and desorption processes in the mesoporous structure become directly detectable as a frequency response, which corresponds directly to a mass or density change in the membrane. The frequency response (at least for thin films) is proportional to the thickness of the mass-responsive film, which suggests good mechanical coupling between electrode and film. Based on this observation, a method for the amplified QCM detection of small mass/density changes is proposed by conducting measurements in rigid mesoporous structures. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A chemically coated piezoelectric sensor has been developed for the determination of PAHs in the liquid phase. An organic monolayer attached to the surface of a gold electrode of a quartz crystal microbalance (QCM) via a covalent thiol-gold link complete with an ionically bound recognition element has been produced. This study has employed the PAH derivative 9-anthracene carboxylic acid which, once bound to the alkane thiol, functions as the recognition element. Binding of anthracene via pi-pi interaction has been observed as a frequency shift in the QCM with a detectability of the target analyte of 2 ppb and a response range of 0-50 ppb. The relative response of the sensor altered for different PAHs despite pi-pi interaction being the sole communication between recognition element and analyte. It is envisaged that such a sensor could be employed in the identification of key marker compounds and, as such, give an indication of total PAH flux in the environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined pi-pi stacked complexes. The dithiolfunctionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.