9 resultados para Cryptomelane
Resumo:
Incremental laser-heating analyses of supergene cryptomelane clusters extracted from three distinct weathering profiles from the Mary Valley region, southeast Queensland, Australia, yield reproducible and well-defined plateau ages ranging from 346 +/- 15 to 291 +/- 14 ka (2 a). Precipitation of supergene cryptomelane in this period implies that relative humid climate prevailed in southeast Queensland from 340 to 290 ha, a result consistent with oxygen isotope analyses of marine sediments from Ocean Drilling Program Site 820 and with regional pollen and spore records. These results, the first report on the precise Ar-40/Ar-39 dating of Quaternary supergene cryptomelane, indicate that Ar-40/Ar-39 analysis of pedogenic minerals provides a reliable geochronometer for the study of Quaternary surficial processes useful in the study of soil formation rates, continental paleoclimates, and archaeological sites devoid of datable volcanic minerals.
Resumo:
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.
Resumo:
One hundred and twenty-five mineral grains from 45 visually pure K-bearing Mn oxide (hollandite group) samples collected from weathering profiles in the Mt Tabor region of central Queensland, Australia, were analysed by the Ar-40/Ar-39 laser probe technique. These K-Mn oxides precipitated mainly through a process of cavity filling (direct precipitation from weathering solution), with botryoidal texture formed by micrometric mineral bands. Well-defined and reproducible plateau ages have been obtained for most samples, ranging from 27.2 +/- 0.8 to 6.8 +/- 0.5 Ma (2 sigma). Statistical analysis of the geochronological results by mixture modelling suggests an episodic mineral precipitation history, with two major peaks at 20.2 +/- 0.22 Ma and 16.5 +/- 0.17 Ma. The geochronological results, when combined with information on paragenetic relationships and mineralogical textures obtained from petrographic, scanning electron microscopy, and electron microprobe investigations, indicate that warm and humid palaeoclimatic conditions favourable to intense chemical weathering prevailed in central Queensland from late Oligocene to middle Miocene, particularly in the early Miocene. These results, in conjunction with previous and ongoing investigations in NW and eastern Queensland, suggest that most of Queensland was dominated by humid climates during the Miocene. (C) 2002 Elsevier Science BN. All rights reserved.
Resumo:
Manganese oxides in association with paleo-weathering may provide significant insights into the multiple factors affecting the formation and evolution of weathering profiles, such as temperature, precipitation, and biodiversity. Laser probe step-heating analysis of supergene hollandite and cryptomelane samples collected from central Queensland, Australia, yield well-defined plateaus and consistent isochron ages, confirming the feasibility, dating very-fined supergene manganese oxides by Ar-40/(39) Ar technique. Two distinct structural sites hosting Ar isotopes can be identified in light of their degassing behaviors obtained by incremental heating analyses. The first site, releasing its gas fraction at the laser power 0.2-0.4 W, yields primarily Ar-40(atm), Ar-38(atm), and Ar-36(atm), (atmospheric Ar isotopes). The second sites yield predominantly Ar-40* (radiogenic Ar-40), Ar-39(K), and Ar-38(K) (nucleogenic components), at similar to0.5-1.0 W. There is no significant Ar gas released at the laser power higher than 1.0 W, indicating the breakdown of the tunnel sites hosting the radiogenic and nucleogenic components. The excellent match between the degassing behaviors of Ar-40*, Ar-39(K), and Ar-38(K) suggests that these isotopes occupy the same crystallographic sites and that Ar-39(K) loss from the tunnel site by recoil during neutron irradiation and/or bake-out procedure preceding isotopic analysis does not occur. Present investigation supports that neither the overwhelming atmospheric Ar-40 nor the very-fined nature of the supergene manganese oxides poses problems in extracting meaningful weathering geo-chronological information by analyzing supergene manganese oxides minerals.
Resumo:
The objects of this study are three manganese ore deposits and one mine derived from lateritic weathering of gondites (spessartine quartzites). These deposits are associated with Mn-rich garnet metasediments of the Itapira Group (Paleoproterozoic) and the reserves were estimated at approximately 2.0 × 10 6 tons with an average grade of 23% MnO 2. The ore minerals are cryptomelane, pyrolusite, lithiophorite, spessartine and psilomelane. Several crystal shapes and textural characteristics were identifi ed in this study, which are related to the degree of liberation, as confi rmed by heavy media separation method. In this study, we determined the main characteristics of the liberation of manganese, which is concentrated in the fi ne grain-size fraction and is lost during ore dressing. Therefore, the low average content of MnO 2 (28%) is due to this loss, whereas at grain size of minus 0.074 mm, contents near 40% MnO 2 were observed. This suggests that the ore can be used for manufacturing manganese sulphate fertilizers. A comparative study with the ore deposits located at Ouro Fino (MG), mainly with the Caneleiras mine, showed that higher degree of liberation occurs in the coarse grain-size fractions (0.84 to 0.074 mm with MnO 2 content of 38%). As a consequence, the ore can be used for manufacturing Fe-Si-Mn alloys.
Resumo:
Minerais de óxidos de Mn com estrutura em túnel, hollandita (Apuí, Amazonas, Brasil, zona em prospecção) e criptomelana (Urucum, Mato Grosso do Sul, Brasil) foram isolados e caracterizados quanto à composição química, mineralógica, estabilidade térmica e morfologia. As seguintes técnicas foram utilizadas para caracterização: microscopia eletrônica de varredura-EDS, análise térmica (TG-DTA) e difração de raios X estático e com aquecimento contínuo entre 100-900 ºC. As seguintes fórmulas empíricas, calculadas com base em 16 átomos de oxigênios foram obtidas: (Ba0,18K0,12Ca0,02Pb0,04)0,76(Mn6,34Al0,61Si0,25Fe0,24Ti0,08) 7,54O160,4H2O para hollandita e (K0,9Na0,04Ca0,03Sr0,04) 1,04 (Mn7,38Fe0,28Al0,27Si0,08) 8O16 para criptomelana. Mediante o uso de microscopia eletrônica de varredura foi possível diferenciar a morfologia da hollandita e da criptomelana. Os resultados de DRX e TG-DTA mostraram que os minerais apresentaram estabilidade térmica acima de 900 ºC.
Resumo:
This pioneering study characterized the chemical, physical and mineralogical aspects of the Urucum Standard manganese ore typology, and evaluated some of its metallurgical characteristics, such as the main mineral heat decompositions, and the particle disintegration at room temperature and under continuous heating. A one-ton sample of ore was received, homogenized and quartered. Representative samples were collected and characterized with the aid of techniques, such as ICP-AES, XRD, SEM-EDS, BET and OM. Representative samples with particle sizes between 9.5 mm and 15.9 mm were separated to perform tumbling tests at room temperature, and thermogravimetry tests for both air and nitrogen constant flow at different temperatures. After each heating cycle, the mechanical strength of the orewas evaluated by means of screening and tumbling procedures. The Urucum Standard typology was classified as an oxidized anhydrous ore, with a high manganese content (~47%). This typology ismainly composed of cryptomelane and pyrolusite; however there is a significantamount of hematite. The Urucum Standard particles presented low susceptibility to disintegration at room temperature, but as temperature increased, susceptibility increased. No significant differences were observed between the tests done with the air or nitrogen injections.
Resumo:
Ar-40/Ar-39 laser incremental-heating analyses of 22 individual grains of supergene cryptomelane from three weathering profiles, up to 400 km apart, in the Rio Doce valley and Barbacena regions at Minas Gerais, Brazil, show that the formation of weathering profiles in these regions is contemporaneous, suggesting a strong weathering event in the Middle to Late Miocene (10-8 Ma). The preservation of these Miocene samples at or near the present surface suggests that either erosion rates have been very low in the region since the Miocene or that a much thicker weathering mantle was present in the region originally. Assuming a constant thickness of weathering profiles in the region throughout the Tertiary, we may calculate weathering front propagation rates of 4-8 m Myr(-1) during the past 10 Ma. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
Ar-40/Ar-39 incremental heating ages for twenty one grains of cryptomelane, collected at 0, 42, 45, and 60 in depths in the Cachoeira Mine weathering profile, Minas Gerais, permit calculating long-term (10 Ma time scale) weathering rate (saprolitization rate) in SE Brazil. Pure well-crystallized cryptomelane grains with high K contents (3-5 wt.%) yield reliable geochronological results. The Ar-40/Ar-39 plateau ages obtained decrease from the top to the bottom of the profile (12.7 +/- 0.1 to 7.6 +/- 0.1 Ma at surface; 7.6 +/- 0.2 to 6.1 +/- 0.2 Ma at 42 m; and 7.1 +/- 0.2 to 5.9 +/- 0.1 Ma at 45 in; 6.6 +/- 0.1 to 5.2 +/- 0.1 Ma at 60 in), yielding a weathering front propagation rate of 8.9 +/- 1.1 m/m.y. From the geochronological results and the mineral transformations implicit by the current mineralogy in the weathering profiles, it is possible to calculate the saprolitization rate for the Cachoeira Mine lithologies and for adjacent weathering profiles developed on granodiorites and scbists. The measured weathering front propagation rate yields a saprolitization rate of 24.9 +/- 3.1 t/km(2)/yr. This average long-term (> 10 Ma) saprolitization rate is consistent with mass balance calculations results for present saprolitization rates in weathering watersheds. These results are also consistent with longterm saprolitization rates estimated by combining cosmogenic isotope denudation rates with mass balance calculations. (c) 2005 Elsevier B.V All rights reserved.