819 resultados para Cryptographic algorithm,


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Communication is the process of transmitting data across channel. Whenever data is transmitted across a channel, errors are likely to occur. Coding theory is a stream of science that deals with finding efficient ways to encode and decode data, so that any likely errors can be detected and corrected. There are many methods to achieve coding and decoding. One among them is Algebraic Geometric Codes that can be constructed from curves. Cryptography is the science ol‘ security of transmitting messages from a sender to a receiver. The objective is to encrypt message in such a way that an eavesdropper would not be able to read it. A eryptosystem is a set of algorithms for encrypting and decrypting for the purpose of the process of encryption and decryption. Public key eryptosystem such as RSA and DSS are traditionally being prel‘en‘ec| for the purpose of secure communication through the channel. llowever Elliptic Curve eryptosystem have become a viable altemative since they provide greater security and also because of their usage of key of smaller length compared to other existing crypto systems. Elliptic curve cryptography is based on group of points on an elliptic curve over a finite field. This thesis deals with Algebraic Geometric codes and their relation to Cryptography using elliptic curves. Here Goppa codes are used and the curves used are elliptic curve over a finite field. We are relating Algebraic Geometric code to Cryptography by developing a cryptographic algorithm, which includes the process of encryption and decryption of messages. We are making use of fundamental properties of Elliptic curve cryptography for generating the algorithm and is used here to relate both.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Side Channel Attack (SCA) differs from traditional mathematic attacks. It gets around of the exhaustive mathematic calculation and precisely pin to certain points in the cryptographic algorithm to reveal confidential information from the running crypto-devices. Since the introduction of SCA by Paul Kocher et al [1], it has been considered to be one of the most critical threats to the resource restricted but security demanding applications, such as wireless sensor networks. In this paper, we focus our work on the SCA-concerned security verification on WSN (wireless sensor network). A detailed setup of the platform and an analysis of the results of DPA (power attack) and EMA (electromagnetic attack) is presented. The setup follows the way of low-cost setup to make effective SCAs. Meanwhile, surveying the weaknesses of WSNs in resisting SCA attacks, especially for the EM attack. Finally, SCA-Prevention suggestions based on Differential Security Strategy for the FPGA hardware implementation in WSN will be given, helping to get an improved compromise between security and cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cryptography is the main form to obtain security in any network. Even in networks with great energy consumption restrictions, processing and memory limitations, as the Wireless Sensors Networks (WSN), this is no different. Aiming to improve the cryptography performance, security and the lifetime of these networks, we propose a new cryptographic algorithm developed through the Genetic Programming (GP) techniques. For the development of the cryptographic algorithm’s fitness criteria, established by the genetic GP, nine new cryptographic algorithms were tested: AES, Blowfish, DES, RC6, Skipjack, Twofish, T-DES, XTEA and XXTEA. Starting from these tests, fitness functions was build taking into account the execution time, occupied memory space, maximum deviation, irregular deviation and correlation coefficient. After obtaining the genetic GP, the CRYSEED and CRYSEED2 was created, algorithms for the 8-bits devices, optimized for WSNs, i.e., with low complexity, few memory consumption and good security for sensing and instrumentation applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document presents GEmSysC, an unified cryptographic API for embedded systems. Software layers implementing this API can be built over existing libraries, allowing embedded software to access cryptographic functions in a consistent way that does not depend on the underlying library. The API complies to good practices for API design and good practices for embedded software development and took its inspiration from other cryptographic libraries and standards. The main inspiration for creating GEmSysC was the CMSIS-RTOS standard, which defines an unified API for embedded software in an implementation-independent way, but targets operating systems instead of cryptographic functions. GEmSysC is made of a generic core and attachable modules, one for each cryptographic algorithm. This document contains the specification of the core of GEmSysC and three of its modules: AES, RSA and SHA-256. GEmSysC was built targeting embedded systems, but this does not restrict its use only in such systems – after all, embedded systems are just very limited computing devices. As a proof of concept, two implementations of GEmSysC were made. One of them was built over wolfSSL, which is an open source library for embedded systems. The other was built over OpenSSL, which is open source and a de facto standard. Unlike wolfSSL, OpenSSL does not specifically target embedded systems. The implementation built over wolfSSL was evaluated in a Cortex- M3 processor with no operating system while the implementation built over OpenSSL was evaluated on a personal computer with Windows 10 operating system. This document displays test results showing GEmSysC to be simpler than other libraries in some aspects. These results have shown that both implementations incur in little overhead in computation time compared to the cryptographic libraries themselves. The overhead of the implementation has been measured for each cryptographic algorithm and is between around 0% and 0.17% for the implementation over wolfSSL and between 0.03% and 1.40% for the one over OpenSSL. This document also presents the memory costs for each implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet today has become a vital part of day to day life, owing to the revolutionary changes it has brought about in various fields. Dependence on the Internet as an information highway and knowledge bank is exponentially increasing so that a going back is beyond imagination. Transfer of critical information is also being carried out through the Internet. This widespread use of the Internet coupled with the tremendous growth in e-commerce and m-commerce has created a vital need for infonnation security.Internet has also become an active field of crackers and intruders. The whole development in this area can become null and void if fool-proof security of the data is not ensured without a chance of being adulterated. It is, hence a challenge before the professional community to develop systems to ensure security of the data sent through the Internet.Stream ciphers, hash functions and message authentication codes play vital roles in providing security services like confidentiality, integrity and authentication of the data sent through the Internet. There are several ·such popular and dependable techniques, which have been in use widely, for quite a long time. This long term exposure makes them vulnerable to successful or near successful attempts for attacks. Hence it is the need of the hour to develop new algorithms with better security.Hence studies were conducted on various types of algorithms being used in this area. Focus was given to identify the properties imparting security at this stage. By making use of a perception derived from these studies, new algorithms were designed. Performances of these algorithms were then studied followed by necessary modifications to yield an improved system consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM- 320 and a new message authentication code MACJER-320. Detailed analysis and comparison with the existing popular schemes were also carried out to establish the security levels.The Secure Socket Layer (SSL) I Transport Layer Security (TLS) protocol is one of the most widely used security protocols in Internet. The cryptographic algorithms RC4 and HMAC have been in use for achieving security services like confidentiality and authentication in the SSL I TLS. But recent attacks on RC4 and HMAC have raised questions about the reliability of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as substitutes for them. Detailed studies on the performance of these new algorithms were carried out; it has been observed that they are dependable alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel and fast technique for cryptographic applications is designed and developed using the symmetric key algorithm “MAJE4” and the popular asymmetric key algorithm “RSA”. The MAJE4 algorithm is used for encryption / decryption of files since it is much faster and occupies less memory than RSA. The RSA algorithm is used to solve the problem of key exchange as well as to accomplish scalability and message authentication. The focus is to develop a new hybrid system called MARS4 by combining the two cryptographic methods with an aim to get the advantages of both. The performance evaluation of MARS4 is done in comparison with MAJE4 and RSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a cryptographic transformation based on matrix manipulations for image encryption. Substitution and diffusion operations, based on the matrix, facilitate fast conversion of plaintext and images into ciphertext and cipher images. The paper describes the encryption algorithm, discusses the simulation results and compares with results obtained from Advanced Encryption Standard (AES). It is shown that the proposed algorithm is capable of encrypting images eight times faster than AES.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of personal communication systems within the last decade has depended upon the utilization of advanced digital schemes for source and channel coding and for modulation. The inherent digital nature of the communications processing has allowed the convenient incorporation of cryptographic techniques to implement security in these communications systems. There are various security requirements, of both the service provider and the mobile subscriber, which may be provided for in a personal communications system. Such security provisions include the privacy of user data, the authentication of communicating parties, the provision for data integrity, and the provision for both location confidentiality and party anonymity. This thesis is concerned with an investigation of the private-key and public-key cryptographic techniques pertinent to the security requirements of personal communication systems and an analysis of the security provisions of Second-Generation personal communication systems is presented. Particular attention has been paid to the properties of the cryptographic protocols which have been employed in current Second-Generation systems. It has been found that certain security-related protocols implemented in the Second-Generation systems have specific weaknesses. A theoretical evaluation of these protocols has been performed using formal analysis techniques and certain assumptions made during the development of the systems are shown to contribute to the security weaknesses. Various attack scenarios which exploit these protocol weaknesses are presented. The Fiat-Sharmir zero-knowledge cryptosystem is presented as an example of how asymmetric algorithm cryptography may be employed as part of an improved security solution. Various modifications to this cryptosystem have been evaluated and their critical parameters are shown to be capable of being optimized to suit a particular applications. The implementation of such a system using current smart card technology has been evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Self-shrinking p-adic cryptographic generator (SSPCG) is a fast software stream cipher. Improved cryptoanalysis of the SSPCG is introduced. This cryptoanalysis makes more precise the length of the period of the generator. The linear complexity and the cryptography resistance against most recently used attacks are invesigated. Then we discuss how such attacks can be avoided. The results show that the sequence generated by a SSPCG has a large period, large linear complexity and is stable against the cryptographic attacks. This gives the reason to consider the SSPSG as suitable for critical cryptographic applications in stream cipher encryption algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To compare the Full Threshold (FT) and SITA Standard (SS) strategies in glaucomatous patients undergoing automated perimetry for the first time. METHODS: Thirty-one glaucomatous patients who had never undergone perimetry underwent automated perimetry (Humphrey, program 30-2) with both FT and SS on the same day, with an interval of at least 15 minutes. The order of the examination was randomized, and only one eye per patient was analyzed. Three analyses were performed: a) all the examinations, regardless of the order of application; b) only the first examinations; c) only the second examinations. In order to calculate the sensitivity of both strategies, the following criteria were used to define abnormality: glaucoma hemifield test (GHT) outside normal limits, pattern standard deviation (PSD) <5%, or a cluster of 3 adjacent points with p<5% at the pattern deviation probability plot. RESULTS: When the results of all examinations were analyzed regardless of the order in which they were performed, the number of depressed points with p<0.5% in the pattern deviation probability map was significantly greater with SS (p=0.037), and the sensitivities were 87.1% for SS and 77.4% for FT (p=0.506). When only the first examinations were compared, there were no statistically significant differences regarding the number of depressed points, but the sensitivity of SS (100%) was significantly greater than that obtained with FT (70.6%) (p=0.048). When only the second examinations were compared, there were no statistically significant differences regarding the number of depressed points, and the sensitivities of SS (76.5%) and FT (85.7%) (p=0.664). CONCLUSION: SS may have a higher sensitivity than FT in glaucomatous patients undergoing automated perimetry for the first time. However, this difference tends to disappear in subsequent examinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The network of HIV counseling and testing centers in São Paulo, Brazil is a major source of data used to build epidemiological profiles of the client population. We examined HIV-1 incidence from November 2000 to April 2001, comparing epidemiological and socio-behavioral data of recently-infected individuals with those with long-standing infection. A less sensitive ELISA was employed to identify recent infection. The overall incidence of HIV-1 infection was 0.53/100/year (95% CI: 0.31-0.85/100/year): 0.77/100/year for males (95% CI: 0.42-1.27/100/year) and 0.22/100/ year (95% CI: 0.05-0.59/100/year) for females. Overall HIV-1 prevalence was 3.2% (95% CI: 2.8-3.7%), being 4.0% among males (95% CI: 3.3-4.7%) and 2.1% among females (95% CI: 1.6-2.8%). Recent infections accounted for 15% of the total (95% CI: 10.2-20.8%). Recent infection correlated with being younger and male (p = 0.019). Therefore, recent infection was more common among younger males and older females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.