635 resultados para Cryptic refugia
Resumo:
The glacial episodes of the Quaternary (2.6 million years ago–present) were a major factor in shaping the present-day distributions of extant flora and fauna, with expansions and contractions of the ice sheets rendering large areas uninhabitable for most species. Fossil records suggest that many species survived glacial maxima by retreating to refugia, usually at lower latitudes. Recently, phylogeographic studies have given support to the existence of previously unknown, or cryptic, refugia. Here we summarise many of these insights into the glacial histories of species in cryptic refugia gained through phylogeographic approaches. Understanding such refugia might be important as the Earth heads into another period of climate change, in terms of predicting the effects on species distribution and survival.
Resumo:
The geographic ranges of European plants and animals underwent periods of contraction and re-colonisation during the climatic oscillations of the Pleistocene. The southern Mediterranean peninsulas (Iberian, Italian and Balkan) have been considered the most likely refugia for temperate/warm adapted species. Recent studies however have revealed the existence of extra-Mediterranean refugia, including the existence of cryptic north-west European refugia during the Last Glacial Maxima (24-14.6 kyr BP). In this study we elucidated the phylogeographic history of two sibling bat species, Pipistrellus pipistrellus and P. pygmaeus in their western European range. We sequenced the highly variable mtDNA D-loop for 167 samples of P. pipistrellus (n = 99) and P. pygmaeus (n = 68) and combined our data with published sequences from 331 individuals. Using phylogenetic methodologies we assessed their biogeographic history. Our data support a single eastern European origin for populations of P. pygmaeus s.str., yet multiple splits and origins for populations of P. pipistrellus s.str., including evidence for refugia within refugia and potential cryptic refugia in north western Europe and in the Caucasus. This complex pattern in the distribution of mtDNA haplotypes supports a long history for P. pipistrellus s.str. in Europe, and the hypothesis that species with a broad ecological niche may have adapted and survived outside southern peninsula throughout the LGM.
Resumo:
Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum(LGM), some 20 000 years BP. The Leisler’s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrialDNAlineages,which probably diverged in separate glacial refugia. Awestern lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.
Resumo:
Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width < 3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90-133 m x gen(-1/2) and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22-49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries.
Resumo:
Algebuckina Waterhole exists as a permanent waterhole near a north-south dirt road and an old trainline on the Oodnadatta Track - lines that once opened up the arid lands of central South Australia but are now bypassed. It also exists as the final and largest freshwater waterhole at the end of the Neales River system. It is a critical biodiversity site, a cultural place and a working environment. It is seen to need a resilient management plan that encompasses diverse interests and impacts. Its managers sense that the theories and practices emerging out of landscape disciplinary systems may be of help. Work-in-progress research towards a management methodology are presented through posing scenarios on how landscape thinking and design, informed by an emergent textual and visual lexicon for water landscapes, can intersect with scientific fieldwork to produce useful and transferable outcomes for Algebuckina.
Resumo:
Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic bacterial promoter in the cDNA encoding the dengue virus (DENV) 5′ UTR. Following cryptic transcription in E. coli, protein expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus cDNA.
Resumo:
This thesis investigates patterns of evolution in a group of native Australo-Papuan rodents. Past climatic change and associated sea level fluctuations, and fragmentation of wet forests in eastern Australia has facilitated rapid radiation, diversification and speciation in this group. This study adds to our understanding of the evolution of Australia’s rainforest fauna and describes the evolutionary relationships of a new genus of Australian rodent.
Resumo:
The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.
Resumo:
This research aims to understand what factors influence consumers' behaviour to subculture marketing and how companies can strategically overcome potential brand alienation. Findings validate cryptic marketing as a strategy for organizations to communicate effectively with their chosen market through the use of cryptic cues, symbols and messages while circumventing negative responses from non-target audiences. The thesis contributes to extending current understanding of marketing communication through the use of covert strategies, employing covert tactics on the non-target, wider market instead of the target, subculture market.
Resumo:
Amino acid sequences are known to constantly mutate and diverge unless there is a limiting condition that makes such a change deleterious. However, closer examination of the sequence and structure reveals that a few large, cryptic repeats are nevertheless sequentially conserved. This leads to the question of why only certain repeats are conserved at the sequence level. It would be interesting to find out if these sequences maintain their conservation at the three-dimensional structure level. They can play an active role in protein and nucleotide stability, thus not only ensring proper functioning but also potentiating malfunction and disease. Therefore, insights into any aspect of the repeats - be it structure, function or evolution - would prove to be of some importance. This study aims to address the relationship between protein sequence and its three-dimensional structure, by examining if large cryptic sequence repeats have the same structure.