997 resultados para Crowd Behaviour
Resumo:
Crowds of non-combatants play a large and increasingly recognized role in modern military operations, and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem we are developing a crowd simulation capable of generating crowds of non-combatant civilians that exhibit a variety of realistic individual and group behaviours at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard distributed simulation architecture. Commercial game technology is utilized in the crowd simulation to model both urban terrain and the physical behaviours of the human characters that make up the crowd. The objective of this paper is to present the process involved with the design and development of a simulation that integrates commercially available game technology with current military simulations in order to generate realistic and believable crowd behaviour.
Resumo:
Measuring the business value that Internet technologies deliver for organisations has proven to be a difficult and elusive task, given their complexity and increased embeddedness within the value chain. Yet, despite the lack of empirical evidence that links the adoption of Information Technology (IT) with increased financial performance, many organisations continue to adopt new technologies at a rapid rate. This is evident in the widespread adoption of Web 2.0 online Social Networking Services (SNSs) such as Facebook, Twitter and YouTube. These new Internet based technologies, widely used for social purposes, are being employed by organisations to enhance their business communication processes. However, their use is yet to be correlated with an increase in business performance. Owing to the conflicting empirical evidence that links prior IT applications with increased business performance, IT, Information Systems (IS), and E-Business Model (EBM) research has increasingly looked to broader social and environmental factors as a means for examining and understanding the broader influences shaping IT, IS and E-Business (EB) adoption behaviour. Findings from these studies suggest that organisations adopt new technologies as a result of strong external pressures, rather than a clear measure of enhanced business value. In order to ascertain if this is the case with the adoption of SNSs, this study explores how organisations are creating value (and measuring that value) with the use of SNSs for business purposes, and the external pressures influencing their adoption. In doing so, it seeks to address two research questions: 1. What are the external pressures influencing organisations to adopt SNSs for business communication purposes? 2. Are SNSs providing increased business value for organisations, and if so, how is that value being captured and measured? Informed by the background literature fields of IT, IS, EBM, and Web 2.0, a three-tiered theoretical framework is developed that combines macro-societal, social and technological perspectives as possible causal mechanisms influencing the SNS adoption event. The macro societal view draws on the concept of Castells. (1996) network society and the behaviour of crowds, herds and swarms, to formulate a new explanatory concept of the network vortex. The social perspective draws on key components of institutional theory (DiMaggio & Powell, 1983, 1991), and the technical view draws from the organising vision concept developed by Swanson and Ramiller (1997). The study takes a critical realist approach, and conducts four stages of data collection and one stage of data coding and analysis. Stage 1 consisted of content analysis of websites and SNSs of many organisations, to identify the types of business purposes SNSs are being used for. Stage 2 also involved content analysis of organisational websites, in order to identify suitable sample organisations in which to conduct telephone interviews. Stage 3 consisted of conducting 18 in-depth, semi-structured telephone interviews within eight Australian organisations from the Media/Publishing and Galleries, Libraries, Archives and Museum (GLAM) industries. These sample organisations were considered leaders in the use of SNSs technologies. Stage 4 involved an SNS activity count of the organisations interviewed in Stage 3, in order to rate them as either Advanced Innovator (AI) organisations, or Learning Focussed (LF) organisations. A fifth stage of data coding and analysis of all four data collection stages was conducted, based on the theoretical framework developed for the study, and using QSR NVivo 8 software. The findings from this study reveal that SNSs have been adopted by organisations for the purpose of increasing business value, and as a result of strong social and macro-societal pressures. SNSs offer organisations a wide range of value enhancing opportunities that have broader benefits for customers and society. However, measuring the increased business value is difficult with traditional Return On Investment (ROI) mechanisms, ascertaining the need for new value capture and measurement rationales, to support the accountability of SNS adoption practices. The study also identified the presence of technical, social and macro-societal pressures, all of which influenced SNS adoption by organisations. These findings contribute important theoretical insight into the increased complexity of pressures influencing technology adoption rationales by organisations, and have important practical implications for practice, by reflecting the expanded global online networks in which organisations now operate. The limitations of the study include the small number of sample organisations in which interviews were conducted, its limited generalisability, and the small range of SNSs selected for the study. However, these were compensated in part by the expertise of the interviewees, and the global significance of the SNSs that were chosen. Future research could replicate the study to a larger sample from different industries, sectors and countries. It could also explore the life cycle of SNSs in a longitudinal study, and map how the technical, social and macro-societal pressures are emphasised through stages of the life cycle. The theoretical framework could also be applied to other social fad technology adoption studies.
Resumo:
The rapid increase in the deployment of CCTV systems has led to a greater demand for algorithms that are able to process incoming video feeds. These algorithms are designed to extract information of interest for human operators. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned `normal' model. Many researchers have tried various sets of features to train different learning models to detect abnormal behaviour in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM) to model the normal activities of people. The outliers of the model with insufficient likelihood are identified as abnormal activities. Our Semi-2D HMM is designed to model both the temporal and spatial causalities of the crowd behaviour by assuming the current state of the Hidden Markov Model depends not only on the previous state in the temporal direction, but also on the previous states of the adjacent spatial locations. Two different HMMs are trained to model both the vertical and horizontal spatial causal information. Location features, flow features and optical flow textures are used as the features for the model. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Observations conducted by researchers revealed that the group interaction within crowds is a common phenomenon and has great influence on pedestrian behaviour. However, most research currently undertaken by various researchers failed to consider the group dynamics when developing pedestrian flow models. This paper presented a critical review of pedestrian models that incorporates group behaviour. Models reviewed in this paper are mainly created by microscopic modelling approaches such as social force, cellular automata, and agent-based method. The purpose of this literature review is to improve the understanding of group dynamics among pedestrians and highlight the need for considering group dynamics when developing pedestrian simulation models.
Resumo:
The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.
Resumo:
Parallels between the dynamic response of flexible bridges under the action of wind and under the forces induced by crowds allow each field to inform the other.Wind-induced behaviour has been traditionally classified into categories such as flutter, galloping, vortex-induced vibration and buffeting. However, computational advances such as the vortex particle method have led to a more general picture where effects may occur simultaneously and interact, such that the simple semantic demarcations break down. Similarly, the modelling of individual pedestrians has progressed the understanding of human–structure interaction, particularly for large amplitude lateral oscillations under crowd loading. In this paper, guided by the interaction of flutter and vortexinduced vibration in wind engineering, a framework is presented, which allows various human–structure interaction effects to coexist and interact, thereby providing a possible synthesis of previously disparate experimental and theoretical results.
Resumo:
C3S2E '16 Proceedings of the Ninth International C* Conference on Computer Science & Software Engineering