978 resultados para Crop pests
Resumo:
An imminent food crisis reinforces the need for novel strategies to increase crop yields worldwide. Effective control of pest insects should be part of such strategies, preferentially with reduced negative impact on the environment and optimal protection and utilization of existing biodiversity. Enhancing the presence and efficacy of native biological control agents could be one such strategy. Plant strengthener is a generic term for several commercially available compounds or mixtures of compounds that can be applied to cultivated plants in order to ‘boost their vigour, resilience and performance’. Studies into the consequences of boosting plant resistance against pests and diseases on plant volatiles have found a surprising and dramatic increase in the plants' attractiveness to parasitic wasps. Here, we summarize the results from these studies and present new results from assays that illustrate the great potential of two commercially available resistance elicitors. We argue that plant strengtheners may currently be the best option to enhance the attractiveness of cultivated plants to biological control agents. Other options, such as the genetic manipulation of the release of specific volatiles may offer future solutions, but in most systems, we still miss fundamental knowledge on which key attractants should be targeted for this approach.
Resumo:
Made up of 84 numbered leaflets, with appendixes and indexes.
Resumo:
RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.
Resumo:
Farmland invertebrates play a pivotal role in the provision of ecosystem services, i.e. services that benefit humans. For example, bumblebees, solitary bees and honeybees, are crucial to the pollination of many of the world's crops and wildflowers, with over 70% of the world's major food crops dependent on the pollination services provided by these insects. The larvae of some butterfly species are considered to be pests; however, together with moth and sawfly larvae, they represent a key dietary component for many farmland birds. Spiders and ground beetles predate on crop pests including aphids, whilst soil macrofauna such as earthworms are vital for soil fertility services and nutrient recycling. Despite their importance, population declines of invertebrates have been observed during the last sixty years in the UK and NW Europe. For example, seven UK bumblebee species are in decline, and in the last 20 years, the species Bombus subterraneus (short-haired bumblebee) has become extinct, whilst there was a 54% decline in honeybee colony numbers in England from 1985 to 2005. Comparable trends have been documented for butterflies with a 23% decline in UK farmland species such as Anthocharis cardamines (orange tip) between 1990 and 2007. These declines have been widely attributed to the modern intensive arable management practices that have been developed to maximise crop yield. For example, loss and fragmentation of foraging and nesting habitats, including species-rich meadows and hedgerows, have been implicated in the decline of bees and butterflies. Increased use of herbicides and fertilisers has caused detrimental effects on many plant species with negative consequences for predatory invertebrates such as spiders and beetles which rely on plants for food and shelter.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study was conducted in the field, in the experimental area of the Section of Crop Production and Aromatic Medicinal Plants, belonging to the Faculty of Agricultural and Veterinary Sciences, Jaboticabal Campus-SP. The aim of the study was to assess the performance of seven genotypes of vegetable soybeans in Jaboticabal-SP. The experiment was carried out in a complete randomized block design with seven treatments (genotypes) and four replications. The genotypes examined were: CNPSOI, JLM003, JLM010, JLM018, JLM019, JLM024 and BRS216. The seeds were obtained from EMBRAPA-Soja and EMBRAPA- Hortaliças, and planted in Styrofoam trays with 128 cells containing Plantmax Hortaliças® as substrate. Transplanting occurred 10 d after seeding when the seedlings showed 2 or 3 definitive leaves and about 12 cm in height, demonstrating that the soil had been properly prepared according to the recommendations for this crop. Pests and diseases were adequately controlled in the event of their occurrence in the experimental area and in accordance with technical recommendations for the chemical products utilized. Collections were carried out based on the maturation of the pods, according to the scale of Fehr and Caviness (1977) adapted by Costa and Marchezan (1982), when the pods reached the reproductive stage R6. The parameters determined were mean precocity, height of the first pod, mean number of pods per plant, mean number of seeds per pod, fresh weight of 100 seeds and total yield of immature grains. Based on the results obtained, the genotypes JLM003 and JLM010 were found to be most indicated for growing vegetable soybeans, because of their capacity to produce immature grains of 1090 and 848 g·m-2, respectively, and fresh weights for 100 seeds of 62.20 and 68.19 g, respectively.
Resumo:
Soybean bugs are major crop pests that cause significant reduction in harvest yield and influence grain quality. The aim of this study was to verify the spatial distribution of Euschistus heros (F.) (Hemiptera: Pentatomidae) in conventional and transgenic soybean cultivars. The experiment was conducted during the 2010-2011 crop season in UNESP/FCAV, Jaboticabal, SP, Brazil, in two fields of 10,000-m2 area that were subdivided into 100 plots (10 m × 10 m). The cultivars sown were M 7908 RR and its isoline M-SOY 8001. The number of the first to fifth instars and the number of adults were determined. To evaluate insect dispersion in the area, the following indices were used: variance/mean ratio, Morisita index, Green coefficient, and the k exponent of the negative binomial distribution. To study probabilistic models to describe the spatial distribution of the insects, the adjustments of the Poisson and negative binomial distributions were tested. The first to third instars showed aggregated spatial distribution, whereas the fourth and fifth instars, and adults, isolated or grouped, showed variation in the arrangement, ranging from moderately aggregated to randomly dispersed. During the adjustment of probability distributions, the negative binomial distribution model showed adjustment for the first to third instars, fourth and fifth instars, adults, and fourth and fifth instars plus adults. © 2013 Sociedade Entomológica do Brasil.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)