950 resultados para Crofton weed (Eupatorium adenophorum)
Resumo:
紫茎泽兰(Eupatorium adenophorum)是臭名昭著的世界恶性杂草之一,目前全世界已有30多个国家和地区遭受到它的入侵危害,因此引起了全社会各方面广泛的关注。我国西南部是紫茎泽兰入侵并造成严重危害的地区之一,本文以四川省攀西地区紫茎泽兰入侵危害严重的生态系统为研究对象,分别对不同生境条件下各年龄紫茎泽兰的生长状况、幼苗生长动态、不同类型群落中紫茎泽兰的种群变化规律以及泽兰实蝇防治紫茎泽兰现状进行研究,分析紫茎泽兰生态学特征及入侵策略,以揭示紫茎泽兰的入侵机制。 不同生境条件下相同年龄紫茎泽兰其生长状况有很大的不同:当年生紫茎泽兰幼苗在偏阴和灌丛遮荫环境下生长状况优于偏阳生境下,一年生以上的成熟植株生长情况则相反;紫茎泽兰在其单优群落中的生长状况明显优于灌丛中伴生的紫茎泽兰,说明一定程度的遮荫、植被覆盖及竞争对紫茎泽兰生长有一定的抑制作用。不同种类的灌木对紫茎泽兰生长的影响亦有所不同,其中,马桑(Coriaria sinica)等冠幅较大、性喜阴湿的落叶类灌木对紫茎泽兰幼苗萌发、种群更新有庇护和促进作用,而其他类冠幅小、常绿或落叶、且生于干旱生境下的灌木,则不利于紫茎泽兰幼苗萌发及种群更新,有些甚至会产生化感物种抑制紫茎泽兰的生长。 紫茎泽兰种子萌发属投机式萌发,一年内只要有适合的温湿条件都可以萌发。种子萌发的高峰期主要集中在雨季,冬春干旱季节萌发率很低。紫茎泽兰为常绿半灌木,终年可持续生长,生长速率受光照、湿度和温度影响显著。秋季萌发的紫茎泽兰幼苗在越冬及干旱季节中,各项生长指标(包括主茎长度、总叶面积、基径等)增长缓慢,一年之内平均月增长量由高到低的顺序分别为:偏阳生境>全荫湿润生境>灌丛遮荫生境,生长旺期为雨季约6 ~10月份;秋季萌发越年生实生苗生长节律与当年生实生苗相似,但生长周期不同于雨季萌发苗,需经过两个冬季才能开花结实完成其生活史;紫茎泽兰生活史循环过程,通过有性生殖与无性生殖相互补的繁殖策略进行种群的更新与扩散,进而达到入侵的目的。 泽兰实蝇(Procecidochares utilis)作为天敌控制紫茎泽兰已经在国内外得到广泛的应用,但关于它对紫茎泽兰控制的有效性和防治现状的研究尚不深入。本文通过对攀西地区紫茎泽兰入侵危害严重的路域生态系统中泽兰实蝇寄生状况的抽样调查,初步研究了泽兰实蝇对紫茎泽兰生长,特别是生殖能力的影响。研究结果表明:1)植株寄生率与枝条寄生率有显著差异(p﹤0.05),分别为71.67% 和17.30%,前者显著高于后者;样方调查结果显示,成熟群落中枝条寄生率为17.48枝•m-2;1虫瘿•枝条-1的枝条占所有寄生枝条的92.30%;2)湿润生境下紫茎泽兰的枝条寄生率为20.27%,显著高于干旱生境下的枝条寄生率(9.33%)(p﹤0.05);3)不同年龄植株枝条寄生率有差异,0 ~1年生植株枝条寄生率分别为36.36%和21.56%,显著高于2 ~4年生的植株枝条寄生率,后者分别为13.50%,8.82%及12.16%(p﹤0.05);4)在目前的寄生强度下,泽兰实蝇对紫茎泽兰枝条的直径、花枝量、头状花序数及结实量均无显著影响(p﹥0.05)。因此可以推断,目前单一的引进泽兰实蝇进行天敌控制不能达到预期的防治目标,天敌的引入也应慎重考虑。 紫茎泽兰能够利用与当地大多数植物种类生长节律的时间差异,通过首先占领时间生态位而达到占据空间生态位,最终导致严重的入侵危害。在不同类型的群落中,紫茎泽兰种群利用不同的适应策略进行入侵。自然和人工播种样地中,紫茎泽兰种群与群落状况的变化规律均呈相反趋势。对于一个成熟的紫茎泽兰种群,一旦其定居后即能很好的利用时间和空间生态位的空缺的来促进其优势地位的增强和巩固,从而逐渐增加其入侵程度,造成越来越大的灾害;而对于一个郁蔽度较好且较完整的群落,紫茎泽兰通过幼苗进行扩张以达到入侵的途径通常比较困难,只有在发生人为活动干扰时,才有可能通过投机式繁殖方式进入群落内部定居,继而通过克隆生殖的方式进行入侵。
Resumo:
紫茎泽兰(Eupatorium adenophorum Spreng.)入侵我国已有70余年的时间,目前已经对我国西南地区造成了严重危害,却缺少有效的防治方法加以控制。本研究着眼于紫茎泽兰治理效果,在两片大面积综合防治样地的基础上,针对综合防治后样地紫茎泽兰再生长情况展开调查研究,并在野外观测的基础上设计两项置于样地附近的盆栽实验,研究紫茎泽兰在不同环境条件下的存活情况,以及与不同物种混播的种间竞争情况。 对综合治理1年后的样地中4个紫茎泽兰种群调查、分析结果表明,在不同的生境,采取不同的方法治理紫茎泽兰会导致紫茎泽兰采取不同的生长和繁殖对策进行再生长。紫茎泽兰生长速度为:水分充足的环境大于水分不充足的环境,萌生植株大于实生植株。种植替代物种绞股蓝(Gynostmma pentaphyllum)能够抑制紫茎泽兰的高生长,但在绞股蓝的压迫下紫茎泽兰长成L型,反而增加了冠幅、分蘖数目和单位株高的分枝数。在繁殖方式方面:采用拔除方法治理的区域紫茎泽兰以克隆繁殖为主,而采用喷洒化学除草剂治理的区域则以有性繁殖为主。 固定样方调查显示,紫茎泽兰再生长的1年当中,群落随季节变化而变。群落的盖度、密度和物种丰富度均随着旱季的深入而达到最低,第二年雨季到来后上升,紫茎泽兰在群落中处于绝对优势,尤其是在旱季优势更为明显。一年生紫茎泽兰在旱季部分植株死亡(死亡率为53.38±1.55%),少部分(5.66±0.45%)开花,产生种子的密度约为50 000ind∙m-2。与本地优势灌木物种车桑子(Dodonaea viscosa)、台湾相思(Acacia confuse)和马桑(Coriaria nepalensis)相比,紫茎泽兰具有更快的生长速度,更大的高度、密度和盖度。 紫茎泽兰种子的萌发需要充足的水分和遮荫条件。在盆栽实验当中,浇水或遮荫条件下足量紫茎泽兰的种子能够萌发更多的幼苗,而且幼苗的死亡率也比无浇水或无遮荫的处理低。在遮荫或去除其它物种竞争的条件下,紫茎泽兰幼苗生长速度更快。只要水分充足紫茎泽兰幼苗不会因拥挤而死亡,但是个体平均生物量会因拥挤而减小。 紫茎泽兰幼苗与本地3种草本植物比较结果,在未遮荫条件下,紫茎泽兰幼苗数量极少,且个体也非常小,而相同条件下荩草(Arthraxon hispidus)和含羞草决明(Cassia mimosoides)生长良好;在遮荫条件下荩草、含羞草决明和戟叶酸模(Rumex haxtatus )与紫茎泽兰相比则几乎没有优势。 成株紫茎泽兰生命力强,难以控制,幼苗时期是采用替代控制方法治理紫茎泽兰的最佳时期。在替代控制物种选择方面,可以在根除后播种本地灌木和草本植物,因为草本植物在早期可以抑制紫茎泽兰幼苗的萌发和生长,而同时播种的灌木种类则可以在植被恢复的后期起到控制紫茎泽兰再生长的重要作用。
Resumo:
紫茎泽兰(Eupatorium adenophorum)是臭名昭著的世界性恶草之一,目前已对全世界30多个国家和地区造成入侵危害,大约在20世纪30年代入侵我国,在我国西南地区造成了严重的危害。本文以四川省攀枝花市遭受紫茎泽兰入侵危害严重的生态系统为研究对象,分别对不同生境下的紫茎泽兰土壤种子库进行调查,以探究紫茎泽兰土壤种子库的结构,并分析人类干扰对土壤种子库结构的影响。并在种子库调查的基础上设计了两项盆栽实验,研究紫茎泽兰土壤种子库的结构的改变导致的紫茎泽兰种子环境因子的改变,从而影响紫茎泽兰种子的萌发、幼苗的命运,以期阐明人类干扰对紫茎泽兰入侵的影响。另外连续测定紫茎泽兰早期生长的生物量,研究紫茎泽兰生物量增长、分配规律,并与其它几种本地种相比较,说明紫茎泽兰能够入侵成功的原因。 在攀枝花紫茎泽兰入侵严重的地区,通过取样研究果园、放牧灌丛以及禁牧灌丛3种不同生境紫茎泽兰土壤种子库特征,发现这3种生境的土壤种子库大小分别为10422粒m-2,3522粒m-2和2889粒m-2 。果园、放牧灌丛和禁牧灌丛等3种干扰程度不同生境的深层种子量占总种子量的比例分别为56.44%,46.96%,24.86%(p=0.006)。从干扰程度上来说,由于果园>放牧灌丛>禁牧灌丛,这一结果表明土壤深层种子量大小与干扰成正比,干扰越大,深层次紫茎泽兰种子量占总种子量的比重越大。由此可以推测,人类的干扰使得紫茎泽兰土壤种子库结构发生了改变,一方面人类干扰导致生境植被覆盖不同,干扰越大,植被覆盖度越小,土壤种子库越大,另一方面人类活动对土壤的直接扰动,使土壤种子库结构发生变化,在放牧灌丛和果园2种生境中,由于人类活动的影响,促使了紫茎泽兰土壤种子库表层种子向下层转移,而且转移量与干扰程度成正相关。由于一定深度埋藏的紫茎泽兰种子萌发的幼苗具有较低的死亡率,进入土壤深层的紫茎泽兰种子越多,紫茎泽兰的长久性土壤种子库就越大,对紫茎泽兰幼苗的补充和定居越有利,入侵也就越难以治理。 初步研究了光照、水分和种子在土壤中的埋藏深度等对紫茎泽兰幼苗的影响,结果发现,1) 播种在0cm、2cm、5cm深度的种子萌发率分别为64.67%、22.67%、13.33%,即种子埋藏越深,萌发率越低,不同层次种子萌发率差异极显著(p=0.00);幼苗死亡率分别为27.95%、0、0,表层种子萌发的幼苗有较高的死亡率,而由埋藏在深层种子萌发的幼苗没有死亡,土壤表层发芽的幼苗与不同埋藏深度种子萌发的幼苗之间死亡率差异极显著(p=0.00);2) 在无遮蔽、半遮蔽、全遮蔽3种不同情况下,紫茎泽兰幼苗的死亡率分别为72.15%、30.38%、4.87%,定居率分别为6.66%、33.99%、46.67%,即遮蔽程度越高,死亡率越低,定居率越高,不同处理之间死亡率和定居率差异均极显著(p=0.00);3) 在浇水、不浇水这2种水分条件下紫茎泽兰的萌发率分别为41.56%、32% (p=0.021);死亡率分别为35.8%、35.23% (p=0.934);定居率分别为29.11%、22.66% (p=0.083),说明水分因子对萌发率的影响显著,对死亡率、定居率的影响不显著。上述结果表明,土壤埋藏深度、光照和水分都是影响紫茎泽兰幼苗萌发的重要因素:一定深度的土壤埋藏能够有效降低紫茎泽兰幼苗的死亡率;光照强度与紫茎泽兰幼苗死亡率成正相关;而水分对紫茎泽兰幼苗的存活影响不显著。 通过跟踪调查紫茎泽兰的早期生长的生物量,发现紫茎泽兰生物量和高度增加迅速,且生物量的增加主要来自地上部分量的增加,而本地灌木却生长缓慢。与本地种相比,紫茎泽兰的根冠比很小,在生殖分配上,紫茎泽兰与本地灌木相比又比较大。另一方面,在生长季到来的时候,紫茎泽兰能够迅速生长,并将大部分生物量分配到地上部分;而在旱季,当许多本地本植物由于枯死、休眠进入休眠状态时,紫茎泽兰却能继续生长,从而确保其在竞争中的空间优势。 综上所述,人类活动的干扰可能导致更多的紫茎泽兰种子进入土壤深层,从而改变了紫茎泽兰土壤种子库的结构;种子萌发后强光直射可能是导致紫茎泽兰幼苗死亡的重要原因;由于土壤深层种子比表层种子具有更强的抵抗强光照射等不良环境因子影响的能力,所萌发的幼苗成活率高,表明其具有更高的繁殖效率。因此可以说是人类活动的干扰不但加剧了紫茎泽兰的入侵,也使得紫茎泽兰入侵后难以根除。
Resumo:
An experiment was conducted to determine what effect simple treatments might have on the voluntary intake by goats in Nepal of Eupatorium adenophorum, an invasive weed that is usually only consumed by goats to a very limited extent. Samples of E. adenophorum were collected and either untreated, soaked for 2 h or wilted for 2 h before being oven dried (60 degrees C) and ground. Soaking and wilting had little effect on the chemical composition of E. adenophorum, but did increase (P=0.036) its in vitro organic matter degradability, by approximately 8%. The short-term intake rate (STIR) of treated and untreated E. adenophorum was then estimated with eight goats. Soaking time (from 2 to 24 h) was not related to STIR (r = -0.111, P=0.198), but the time E. adenophorum was left to wilt (from 2 to 48h), was positively related to STIR (r=0.521, P<0.001), with values of STIR (g dry matter/min kg goat liveweight(0.75)) being 0.405, 0.649,1.058, S.E.M. 0.088 for E. adenophorum, that had been wilted for 0, 24 and 48 h respectively (P<0.001). Liveweight change of goats and voluntary intake of E. adenophorum by goats was then estimated with 24 goats. E. adenophorum was fed either unwilted, or wilted for 24 or 48 h. It was fed as the sole forage or as a 3:1 mixture (dry matter basis) with Ficus cunia. There was a linear (P<0.001) and quadratic (P<0.01) increase in the intake of total forage and E. adenophorum with wilting time of E. adenophorum. Offering Ficus cunia increased total forage intake, but decreased E. adenophorum intake (P<0.05). After four weeks, there was virtually no change in goat liveweight and no significant difference between treatments. The results suggest that wilting E adenophorum for 24 h could increase its intake by goats, and thereby increase its usefulness, as a potential source of forage in the dry season of Nepal, when forage scarcity is a common constraint to livestock production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
外来种紫茎泽兰 (Eupatorium adenophorum Spreng.) 对我国西南地区生态系统的危害已长达50~60年之久,我国于20世纪70年代开展紫茎泽兰的研究,但目前仍然没有能力将其限制在一个可控范围之内,随着我国对生物多样性重要性认识的加深,对于紫茎泽兰的研究也越来越深入。本文以四川攀枝花受入侵生态系统为例,通过对该地区植被、土壤种子库以及当地紫茎泽兰无性繁殖和种子萌发特征开展研究,分析受入侵生态系统的特征,结合紫茎泽兰种群补充特征,揭示紫茎泽兰入侵机制,探索管理受害生态系统的方法。 所选实验点为紫茎泽兰危害严重的地带,群落中紫茎泽兰为优势种,伴生种灌木18种,草本植物65种,草本层以紫茎泽兰最为昌盛,种群构成为1~4年生植株与其荫庇下大量的实生幼苗,Drude多度极大,频度达100%。紫茎泽兰与灌木重要值之间极显著负相关 (P<0.01) ,与其他草本重要值之间极显著负相关 (P<0.01) ,灌木与其他草本重要值间的相关性不显著 (P>0.05) 。说明紫茎泽兰的生长与灌木或草本间存在微妙的此消彼长的关联,充分显示了紫茎泽兰与当地物种间的竞争事实。 紫茎泽兰种子雨前的种子库为所研究地区绝大部分物种的长久性土壤种子库,本地区种子库的组成物种共有13种,包括灌木和草本。紫茎泽兰占整个种子库储量的61.3%,在长久种子库中占有明显的优势;种子库与植被间相似度为0.31,虽然种子库中物种均为植被的组成成分,但是植被中绝大多数物种种子未检测出,种子库中出现的物种与该物种本身的生理生态特性密切相关。种子雨是种子库的来源,紫茎泽兰种子雨前表层种子储量只占种子雨后的7.4%,中下层储量占33.8%,共占41.2%,即每年仅58.8%的种子在当年雨季萌发,剩余的在土壤中保持休眠状态。依 目前的研究结果,本地植被仅靠自然恢复的可能性不大。 紫茎泽兰种子最适发芽温度为25℃;储藏1.5 a后的种子萌发率有所下降,25℃下萌发率由77%下降为66%;紫茎泽兰种子有良好的休眠机制,对生境的干扰可以促进紫茎泽兰长久土壤种子库的形成,为紫茎泽兰种群补充奠定了基础。稀疏的植被有利于紫茎泽兰种子萌发及幼苗建植,对原生植被的破坏则促进了紫茎泽兰实生苗的补充。因而保护原始生境、减少对原生态系统的破坏,是减少和抑制紫茎泽兰种群补充的有效途径。 紫茎泽兰 (克隆) 离体无性繁殖的部位为根颈部分,其他离体部分没有无性繁殖能力或很弱;灌丛和路域生境下的离体部分在给予相同培养条件下,克隆繁殖效益有差别,灌丛生境萌芽较早,而主茎和叶生长速度较慢。拔除干扰对于紫茎泽兰萌生新枝具有刺激作用,对紫茎泽兰植株上部的割取类似于给它提供更新复壮的机会,因此在紫茎泽兰防治过程中一定要注意将其拔除干净,以防后患。
Resumo:
生物入侵作为全球变化的一部分,已经引起广泛的关注;而群落可入侵性是生物入侵研究的核心和热点问题之一。本文以原产墨西哥,广泛入侵我国西南地区的紫茎泽兰(Eupatorium adenophorum)为例:首先,对西南地区被紫茎泽兰入侵的群落和生境进行了分类;然后,就地形、本地植物物种多样性、环境梯度等对群落可入侵性的影响进行了探讨;最后,对紫茎泽兰的空间分布格局进行了模拟和预测。 在小尺度上,紫茎泽兰入侵与本地植物物种多样性呈负相关,表明资源的可利用性可能是调节群落可入侵性的主导因素;本地植物物种多样性在群落演替过程中和入侵的早期抑制紫茎泽兰入侵;在大的尺度上,物理环境的变异超过了内在生物因子的重要性,本地植物物种多样性与紫茎泽兰入侵成功呈正相关。 紫茎泽兰主要通过公路和河流在我国西南地区入侵和扩散;资源的可利用性是影响公路和河流两侧群落可入侵性的关键因子。 紫茎泽兰分布中心主要在沧源、元江和西昌;位于分布区边缘的乐业、重庆和泸定有可能成为新的分布中心,并对邻近地区,尤其北面和东面的区域形成繁殖体压力;紫茎泽兰整体上有向东和向北扩散的趋势。目前主要分布在云贵高原,将来的分布区还将以云贵高原为核心。
Resumo:
紫茎泽兰(Eupatorium adenophorum Spreng.)种子萌发的温度范围是10-30 ℃,最适宜的萌发温度是25℃,高温显著抑制其萌发,35 ℃恒温即没有种子萌发。紫茎泽兰种子萌发对于光的需求为中等,在黑暗中发芽率为17%。紫茎泽兰种子萌发的pH 范围是5.0-7.0,最高发芽率是以蒸馏水为介质,其pH为5.7。紫茎泽兰种子的萌发率随着水势的加大而逐渐降低,在水势大于-0.7 MPa 条件下,即没有种子萌发。在盐分含量小于100 mM NaCl 条件下,其发芽率均大于65%;在盐分含量小于250 mM条件下,其发芽率仍大于10%,当盐分含量达到300 mM NaCl时,即没有种子萌发。紫茎泽兰种子在土壤表层其发芽率最高,当埋藏深度为1.5 cm时即没有种子萌发。根据我们所得的实验结果,对比其原产地的气候条件并结合我国的气候条件和土壤条件进行分析,我们预测紫茎泽兰未来在中国的分布范围将局限在云贵高原,尽管在某些气候和土壤环境适宜的条件下仍有可能会形成零星分布区。 研究了紫茎泽兰和飞机草(Eupatorium odoratum L.)在三种环境胁迫条件下(高温、低温、干旱)七种抗氧化酶活性的变化。结果表明:这三种环境胁迫都对两种植物的生物膜系统造成了损伤,造成了植物体内丙二醛含量的升高。紫茎泽兰在这三种环境胁迫条件下,DHAR活性都升高;SOD活性也都升高,但是在低温处理时与对照的差别并不明显;POD和GR活性在低温和干旱处理时升高,在高温处理时降低;CAT活性在高温和干旱处理时降低,在低温处理时升高;MDAR活性在在高温和干旱处理时降低,在低温处理时略微上升,但是与对照的差别并不明显;APX活性则在三种环境胁迫下表现各不相同。通过这些结果可以说明:DHAR对紫茎泽兰抵抗不良环境的损伤具有重要作用。 而飞机草的抗氧化酶系统的变化为:SOD、APX和DHAR在三种环境胁迫下酶活性都升高;CAT在高温胁迫下升高,而在低温和干旱胁迫下酶活性降低;POD和MDAR在高温和干旱胁迫下酶活性升高,而在低温胁迫下酶活性降低;GR在高温和干旱胁迫下酶活性升高,而在低温胁迫下保持不变。以上的研究结果说明,SOD、APX和DHAR是飞机草抵御环境胁迫的关键酶。 通过比较两种植物在温度胁迫下抗氧化酶系统的不同响应,我们研究发现:两种植物之所以对温度的忍耐性不同,在一定程度上是由于它们在温度胁迫时抗氧化酶系统所作出的不同响应,抗氧化酶系统很可能在两种植物抵抗温度胁迫过程中扮演重要角色,即通过有效调节抗氧化酶活性来减少植物体内有害物质-活性氧自由基的积累,从而减少对植物细胞膜的损伤。两者的差别主要是:紫茎泽兰在低温胁迫时,清除活性氧的抗氧化酶都增加,这就减轻了活性氧自由基在植物细胞中的积累,从而可以在一定程度上保护植物。但是,在高温胁迫时CAT, POD, APX, GR和MDAR酶活性并没有随着SOD活性的升高而升高,所以很有可能造成对细胞有毒害作用的H2O2累积,其结果就造成了紫茎泽兰在高温胁迫下叶片细胞膜的过氧化程度较强。而飞机草的情况正相反,在低温胁迫下飞机草叶片细胞膜的过氧化程度较强,抗氧化酶的协调上升出现在飞机草遭受高温胁迫时,而当其处于低温胁迫时抗氧化酶间的变化趋势则出现了很大分歧,这说明飞机草在高温胁迫时较低温胁迫时能够较好地保护自身遭受活性氧自由基的伤害。