86 resultados para Cricetinae
Resumo:
Films of silk fibroin (SF) and sodium alginate (SA) blends were prepared by solution casting technique. The miscibility of SF and SA in those blends was evaluated and scanning electron microscopy (SEM) revealed that SF/SA 25/75 wt.% blends underwent microscopic phase separation, resulting in globular structures composed mainly of SF. X-ray diffraction indicated the amorphous nature of these blends, even after a treatment with ethanol that turned them insoluble in water. Thermal analyses of blends showed the peaks of degradation of pristine SF and SA shifted to intermediate temperatures. Water vapor permeability, swelling capacity and tensile strength of SF films could be enhanced by blending with SA. Cell viability remained between 90 and 100%, as indicated by in vitro cytotoxicity test. The SF/SA blend with self-assembled SF globules can be used to modulate structural and mechanical properties of the final material and may be used in designing high performance wound dressing.
Resumo:
Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.
Resumo:
Semliki Forest virus (SFV) vectors have been efficiently used for rapid high level expression of several G protein-coupled receptors. Here we describe the use of SFV vectors to express the alpha 1b-adrenergic receptor (AR) alone or in the presence of the G protein alpha q and/or beta 2 and gamma 2 subunits. Infection of baby hamster kidney (BHK) cells with recombinant SFV-alpha 1b-AR particles resulted in high specific binding activity of the alpha 1b-AR (24 pmol receptor/mg protein). Time-course studies indicated that the highest level of receptor expression was obtained 30 hours post-infection. The stimulation of BHK cells, with epinephrine led to a 5-fold increase in inositol phosphate (IP) accumulation, confirming the functional coupling of the receptor to G protein-mediated activation of phospholipase C. The SFV expression system represents a rapid and reproducible system to study the pharmacological properties and interactions of G protein coupled receptors and of G protein subunits.
Resumo:
NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
Asthma is a chronic inflammatory disease of the airways that involves many cell types, amongst which mast cells are known to be important. Adenosine, a potent bronchoconstricting agent, exerts its ability to modulate adenosine receptors of mast cells thereby potentiating derived mediator release, histamine being one of the first mediators to be released. The heterogeneity of sources of mast cells and the lack of highly potent ligands selective for the different adenosine receptor subtypes have been important hurdles in this area of research. In the present study we describe compound C0036E08, a novel ligand that has high affinity (pK(i) 8.46) for adenosine A(2B) receptors, being 9 times, 1412 times and 3090 times more selective for A(2B) receptors than for A(1), A(2A) and A(3) receptors, respectively. Compound C0036E08 showed antagonist activity at recombinant and native adenosine receptors, and it was able to fully block NECA-induced histamine release in freshly isolated mast cells from human bronchoalveolar fluid. C0036E08 has been shown to be a valuable tool for the identification of adenosine A(2B) receptors as the adenosine receptors responsible for the NECA-induced response in human mast cells. Considering the increasing interest of A(2B) receptors as a therapeutic target in asthma, this chemical tool might provide a base for the development of new anti-asthmatic drugs.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
Neonatal diabetes mellitus can be transient or permanent. The severe form of permanent neonatal diabetes mellitus can be associated with pancreas agenesis. Normal pancreas development is controlled by a cascade of transcription factors, where insulin promoter factor 1 (IPF1) plays a crucial role. Here, we describe two novel mutations in the IPF1 gene leading to pancreas agenesis. Direct sequence analysis of exons 1 and 2 of the IPF1 gene revealed two point mutations within the homeobox in exon 2. Genetic analysis of the parents showed that each mutation was inherited from one parent. Mutations localized in helices 1 and 2, respectively, of the homeodomain, decreased the protein half-life significantly, leading to intracellular IPF1 levels of 36% and 27% of wild-type levels. Both mutant forms of IPF1 were normally translocated to the nucleus, and their DNA binding activity on different known target promoters was similar to that of the wild-type protein. However, transcriptional activity of both mutant IPF1 proteins, alone or in combination with HNF3 beta/Foxa2, Pbx1, or the heterodimer E47-beta 2 was reduced, findings accounted for by decreased IPF1 steady state levels and not by impaired protein-protein interactions. We conclude that the IPF1 level is critical for human pancreas formation.
Resumo:
Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
Glucagon-like peptide-1 stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor that activates the adenylyl cyclase pathway. We previously demonstrated that heterologous desensitization of the receptor by protein kinase C correlated with phosphorylation in a 33-amino acid-long segment of the receptor carboxyl-terminal cytoplasmic tail. Here, we determined that the in vivo sites of phosphorylation are four serine doublets present at positions 431/432, 441/442, 444/445, and 451/452. In vitro phosphorylation of fusion proteins containing mutant receptor C-tails, however, indicated that whereas serines at position 431/432 were good substrates for protein kinase C (PKC), serines 444/445 and 451/452 were poor substrates, and serines 441/442 were not substrates. In addition, serine 416 was phosphorylated on fusion protein but not in intact cells. This indicated that in vivo a different PKC isoform or a PKC-activated kinase may phosphorylate the receptor. The role of phosphorylation on receptor desensitization was assessed using receptor mutants expressed in COS cells or Chinese hamster lung fibroblasts. Mutation of any single serine doublet to alanines reduced the extent of phorbol 12-myristate 13-acetate-induced desensitization, whereas substitution of any combination of two serine doublets suppressed it. Our data thus show that the glucagon-like peptide-1 receptor can be phosphorylated in response to phorbol 12-myristate 13-acetate on four different sites within the cytoplasmic tail. Furthermore, phosphorylation of at least three sites was required for desensitization, although maximal desensitization was only achieved when all four sites were phosphorylated.
Resumo:
Mucocutaneous leishmaniasis (MCL) in South and Central America is characterized by the dissemination (metastasis) of Leishmania Viannia subgenus parasites from a cutaneous lesion to nasopharyngeal tissues. Little is known about the pathogenesis of MCL, especially with regard to the virulence of the parasites and the process of metastatic dissemination. We previously examined the functional relationship between cytoplasmic peroxiredoxin and metastatic phenotype using highly, infrequently, and nonmetastatic clones isolated from an L. (V.) guyanensis strain previously shown to be highly metastatic in golden hamsters. Distinct forms of cytoplasmic peroxiredoxin were identified and found to be associated with the metastatic phenotype. We report here that peroxidase activity in the presence of hydrogen peroxide and infectivity differs between metastatic and nonmetastatic L. (V.) guyanensis clones. After hydrogen peroxide treatment or heat shock, peroxiredoxin was detected preferentially as dimers in metastatic L. (V.) guyanensis clones and in L. (V.) panamensis strains from patients with MCL, compared with nonmetastatic parasites. These data provide evidence that resistance to the first microbicidal response of the host cell by Leishmania promastigotes is linked to peroxiredoxin conformation and may be relevant to intracellular survival and persistence, which are prerequisites for the development of metastatic disease.
Resumo:
Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.
Resumo:
Replacement of the hyperimmune anti-Rhesus (Rh) D immunoglobulin, currently used to prevent haemolytic disease of the newborn, by fully recombinant human anti-RhD antibodies would solve the current logistic problems associated with supply and demand. The combination of phage display repertoire cloning with precise selection procedures enables isolation of specific genes that can then be inserted into mammalian expression systems allowing production of large quantities of recombinant human proteins. With the aim of selecting high-affinity anti-RhD antibodies, two human Fab libraries were constructed from a hyperimmune donor. Use of a new phage panning procedure involving bromelin-treated red blood cells enabled the isolation of two high-affinity Fab-expressing phage clones. LD-6-3 and LD-6-33, specific for RhD. These showed a novel reaction pattern by recognizing the D variants D(III), D(IVa), D(IVb), D(Va), D(VI) types I and II. D(VII), Rh33 and DFR. Full-length immunoglobulin molecules were constructed by cloning the variable regions into expression vectors containing genomic DNA encoding the immunoglobulin constant regions. We describe the first, stable, suspension growth-adapted Chinese hamster ovary (CHO) cell line producing a high affinity recombinant human IgG1 anti-RhD antibody adapted to pilot-scale production. Evaluation of the Fc region of this recombinant antibody by either chemiluminescence or antibody-dependent cell cytotoxicity (ADCC) assays demonstrated macrophage activation and lysis of red blood cells by human lymphocytes. A consistent source of recombinant human anti-RhD immunoglobulin produced by CHO cells is expected to meet the stringent safety and regulatory requirements for prophylactic application.
Resumo:
NK cell function is regulated by a dual receptor system, which integrates signals from triggering receptors and MHC class I-specific inhibitory receptors. We show here that the src family kinase Fyn is required for efficient, NK cell-mediated lysis of target cells, which lack both self-MHC class I molecules and ligands for NKG2D, an activating NK cell receptor. In contrast, NK cell inhibition by the MHC class I-specific receptor Ly49A was independent of Fyn, suggesting that Fyn is specifically required for NK cell activation via non-MHC receptor(s). Compared to wild type, significantly fewer Fyn-deficient NK cells expressed the inhibitory Ly49A receptor. The presence of a transgenic Ly49A receptor together with its H-2(d) ligand strongly reduced the usage of endogenous Ly49 receptors in Fyn-deficient mice. These data suggest a model in which the repertoire of inhibitory Ly49 receptors is formed under the influenced of Fyn-dependent NK cell activation as well as the respective MHC class I environment. NK cells may acquire Ly49 receptors until they generate sufficient inhibitory signals to balance their activation levels. Such a process would ensure the induction of NK cell self-tolerance.