943 resultados para Crash Predictions
Resumo:
The Highway Safety Manual (HSM) estimates roadway safety performance based on predictive models that were calibrated using national data. Calibration factors are then used to adjust these predictive models to local conditions for local applications. The HSM recommends that local calibration factors be estimated using 30 to 50 randomly selected sites that experienced at least a total of 100 crashes per year. It also recommends that the factors be updated every two to three years, preferably on an annual basis. However, these recommendations are primarily based on expert opinions rather than data-driven research findings. Furthermore, most agencies do not have data for many of the input variables recommended in the HSM. This dissertation is aimed at determining the best way to meet three major data needs affecting the estimation of calibration factors: (1) the required minimum sample sizes for different roadway facilities, (2) the required frequency for calibration factor updates, and (3) the influential variables affecting calibration factors. In this dissertation, statewide segment and intersection data were first collected for most of the HSM recommended calibration variables using a Google Maps application. In addition, eight years (2005-2012) of traffic and crash data were retrieved from existing databases from the Florida Department of Transportation. With these data, the effect of sample size criterion on calibration factor estimates was first studied using a sensitivity analysis. The results showed that the minimum sample sizes not only vary across different roadway facilities, but they are also significantly higher than those recommended in the HSM. In addition, results from paired sample t-tests showed that calibration factors in Florida need to be updated annually. To identify influential variables affecting the calibration factors for roadway segments, the variables were prioritized by combining the results from three different methods: negative binomial regression, random forests, and boosted regression trees. Only a few variables were found to explain most of the variation in the crash data. Traffic volume was consistently found to be the most influential. In addition, roadside object density, major and minor commercial driveway densities, and minor residential driveway density were also identified as influential variables.
Resumo:
Listed Australian property companies wrote off more than $8.5 billlion from their ill-fated US investment adventures during this reporting season.
Resumo:
There is consensus among community and road safety agencies that driver fatigue is a major road safety issue and it is well known that excessive fatigue is linked with an increased risk of a motor vehicle crash. Previous research has implicated a wide variety of factors involved in fatigue-related crashes and the effects of these various factors in regard to crash risk can be interpreted as causal (i.e. alcohol and/or drugs may induce fatigue states) or additive (e.g. where a lack of sleep is combined with alcohol). As such, the purpose of this investigation was to examine self-report data to determine whether there are any differences in the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. Such research is important to understand how fatigue related incidents occur within the typical driving patterns of men and women and it provides a starting point in order to explore if males and females experience and understand the risk of diving when tired in the same way. A representative sample of (N = 1,600) residents living in the Australian Capital Territory (ACT) and New South Wales (NSW), Australia, were surveyed regarding their experience of fatigue and their involvement in fatigue-related crashes and close call incidents. Results revealed that over 35% of participants reported having had a close call or crash due to driving when tired in the five years prior to the study being conducted. In addition, the results obtained revealed a number of interesting characteristics that provide preliminary evidence that gender differences do exist when examining the prevalence, crash characteristics, and travel patterns of males and females involved in a fatigue-related crash or close call event. It is argued that the results obtained can provide particularly useful information for the refinement and further development of appropriate countermeasures that better target this complex issue.
Resumo:
Research has noted a ‘pronounced pattern of increase with increasing remoteness' of death rates in road crashes. However, crash characteristics by remoteness are not commonly or consistently reported, with definitions of rural and urban often relying on proxy representations such as prevailing speed limit. The current paper seeks to evaluate the efficacy of the Accessibility / Remoteness Index of Australia (ARIA+) to identifying trends in road crashes. ARIA+ does not rely on road-specific measures and uses distances to populated centres to attribute a score to an area, which can in turn be grouped into 5 classifications of increasing remoteness. The current paper uses applications of these classifications at the broad level of Australian Bureau of Statistics' Statistical Local Areas, thus avoiding precise crash locating or dedicated mapping software. Analyses used Queensland road crash database details for all 31,346 crashes resulting in a fatality or hospitalisation occurring between 1st July, 2001 and 30th June 2006 inclusive. Results showed that this simplified application of ARIA+ aligned with previous definitions such as speed limit, while also providing further delineation. Differences in crash contributing factors were noted with increasing remoteness such as a greater representation of alcohol and ‘excessive speed for circumstances.' Other factors such as the predominance of younger drivers in crashes differed little by remoteness classification. The results are discussed in terms of the utility of remoteness as a graduated rather than binary (rural/urban) construct and the potential for combining ARIA crash data with census and hospital datasets.
Resumo:
Crash risk is the statistical probability of a crash. Its assessment can be performed through ex post statistical analysis or in real-time with on-vehicle systems. These systems can be cooperative. Cooperative Vehicle-Infrastructure Systems (CVIS) are a developing research avenue in the automotive industry worldwide. This paper provides a survey of existing CVIS systems and methods to assess crash risk with them. It describes the advantages of cooperative systems versus non-cooperative systems. A sample of cooperative crash risk assessment systems is analysed to extract vulnerabilities according to three criteria: market penetration, over-reliance on GPS and broadcasting issues. It shows that cooperative risk assessment systems are still in their infancy and requires further development to provide their full benefits to road users.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.
Resumo:
The wide range of contributing factors and circumstances surrounding crashes on road curves suggest that no single intervention can prevent these crashes. This paper presents a novel methodology, based on data mining techniques, to identify contributing factors and the relationship between them. It identifies contributing factors that influence the risk of a crash. Incident records, described using free text, from a large insurance company were analysed with rough set theory. Rough set theory was used to discover dependencies among data, and reasons using the vague, uncertain and imprecise information that characterised the insurance dataset. The results show that male drivers, who are between 50 and 59 years old, driving during evening peak hours are involved with a collision, had a lowest crash risk. Drivers between 25 and 29 years old, driving from around midnight to 6 am and in a new car has the highest risk. The analysis of the most significant contributing factors on curves suggests that drivers with driving experience of 25 to 42 years, who are driving a new vehicle have the highest crash cost risk, characterised by the vehicle running off the road and hitting a tree. This research complements existing statistically based tools approach to analyse road crashes. Our data mining approach is supported with proven theory and will allow road safety practitioners to effectively understand the dependencies between contributing factors and the crash type with the view to designing tailored countermeasures.
Resumo:
The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.
Resumo:
Road curves are an important feature of road infrastructure and many serious crashes occur on road curves. In Queensland, the number of fatalities is twice as many on curves as that on straight roads. Therefore, there is a need to reduce drivers’ exposure to crash risk on road curves. Road crashes in Australia and in the Organisation for Economic Co-operation and Development(OECD) have plateaued in the last five years (2004 to 2008) and the road safety community is desperately seeking innovative interventions to reduce the number of crashes. However, designing an innovative and effective intervention may prove to be difficult as it relies on providing theoretical foundation, coherence, understanding, and structure to both the design and validation of the efficiency of the new intervention. Researchers from multiple disciplines have developed various models to determine the contributing factors for crashes on road curves with a view towards reducing the crash rate. However, most of the existing methods are based on statistical analysis of contributing factors described in government crash reports. In order to further explore the contributing factors related to crashes on road curves, this thesis designs a novel method to analyse and validate these contributing factors. The use of crash claim reports from an insurance company is proposed for analysis using data mining techniques. To the best of our knowledge, this is the first attempt to use data mining techniques to analyse crashes on road curves. Text mining technique is employed as the reports consist of thousands of textual descriptions and hence, text mining is able to identify the contributing factors. Besides identifying the contributing factors, limited studies to date have investigated the relationships between these factors, especially for crashes on road curves. Thus, this study proposed the use of the rough set analysis technique to determine these relationships. The results from this analysis are used to assess the effect of these contributing factors on crash severity. The findings obtained through the use of data mining techniques presented in this thesis, have been found to be consistent with existing identified contributing factors. Furthermore, this thesis has identified new contributing factors towards crashes and the relationships between them. A significant pattern related with crash severity is the time of the day where severe road crashes occur more frequently in the evening or night time. Tree collision is another common pattern where crashes that occur in the morning and involves hitting a tree are likely to have a higher crash severity. Another factor that influences crash severity is the age of the driver. Most age groups face a high crash severity except for drivers between 60 and 100 years old, who have the lowest crash severity. The significant relationship identified between contributing factors consists of the time of the crash, the manufactured year of the vehicle, the age of the driver and hitting a tree. Having identified new contributing factors and relationships, a validation process is carried out using a traffic simulator in order to determine their accuracy. The validation process indicates that the results are accurate. This demonstrates that data mining techniques are a powerful tool in road safety research, and can be usefully applied within the Intelligent Transport System (ITS) domain. The research presented in this thesis provides an insight into the complexity of crashes on road curves. The findings of this research have important implications for both practitioners and academics. For road safety practitioners, the results from this research illustrate practical benefits for the design of interventions for road curves that will potentially help in decreasing related injuries and fatalities. For academics, this research opens up a new research methodology to assess crash severity, related to road crashes on curves.
Resumo:
In order to estimate the safety impact of roadway interventions engineers need to collect, analyze, and interpret the results of carefully implemented data collection efforts. The intent of these studies is to develop Accident Modification Factors (AMF's), which are used to predict the safety impact of various road safety features at other locations or in upon future enhancements. Models are typically estimated to estimate AMF's for total crashes, but can and should be estimated for crash outcomes as well. This paper first describes data collected with the intent estimate AMF's for rural intersections in the state of Georgia within the United Sates. Modeling results of crash prediction models for the crash outcomes: angle, head-on, rear-end, sideswipe (same direction and opposite direction) and pedestrian-involved crashes are then presented and discussed. The analysis reveals that factors such as the Annual Average Daily Traffic (AADT), the presence of turning lanes, and the number of driveways have a positive association with each type of crash, while the median width and the presence of lighting are negatively associated with crashes. The model covariates are related to crash outcome in different ways, suggesting that crash outcomes are associated with different pre-crash conditions.
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.