806 resultados para Crash Prediction
Resumo:
Crash reduction factors (CRFs) are used to estimate the potential number of traffic crashes expected to be prevented from investment in safety improvement projects. The method used to develop CRFs in Florida has been based on the commonly used before-and-after approach. This approach suffers from a widely recognized problem known as regression-to-the-mean (RTM). The Empirical Bayes (EB) method has been introduced as a means to addressing the RTM problem. This method requires the information from both the treatment and reference sites in order to predict the expected number of crashes had the safety improvement projects at the treatment sites not been implemented. The information from the reference sites is estimated from a safety performance function (SPF), which is a mathematical relationship that links crashes to traffic exposure. The objective of this dissertation was to develop the SPFs for different functional classes of the Florida State Highway System. Crash data from years 2001 through 2003 along with traffic and geometric data were used in the SPF model development. SPFs for both rural and urban roadway categories were developed. The modeling data used were based on one-mile segments that contain homogeneous traffic and geometric conditions within each segment. Segments involving intersections were excluded. The scatter plots of data show that the relationships between crashes and traffic exposure are nonlinear, that crashes increase with traffic exposure in an increasing rate. Four regression models, namely, Poisson (PRM), Negative Binomial (NBRM), zero-inflated Poisson (ZIP), and zero-inflated Negative Binomial (ZINB), were fitted to the one-mile segment records for individual roadway categories. The best model was selected for each category based on a combination of the Likelihood Ratio test, the Vuong statistical test, and the Akaike's Information Criterion (AIC). The NBRM model was found to be appropriate for only one category and the ZINB model was found to be more appropriate for six other categories. The overall results show that the Negative Binomial distribution model generally provides a better fit for the data than the Poisson distribution model. In addition, the ZINB model was found to give the best fit when the count data exhibit excess zeros and over-dispersion for most of the roadway categories. While model validation shows that most data points fall within the 95% prediction intervals of the models developed, the Pearson goodness-of-fit measure does not show statistical significance. This is expected as traffic volume is only one of the many factors contributing to the overall crash experience, and that the SPFs are to be applied in conjunction with Accident Modification Factors (AMFs) to further account for the safety impacts of major geometric features before arriving at the final crash prediction. However, with improved traffic and crash data quality, the crash prediction power of SPF models may be further improved.
Resumo:
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.
Resumo:
The purpose of this study is to examine macroeconomic indicators‟ and technical analysis‟ ability to signal market crashes. Indicators examined were Yield Spread, The Purchasing Managers Index and the Consumer Confidence Index. Technical Analysis indicators were moving average, Moving Average Convergence-Divergence and Relative Strength Index. We studied if commonly used macroeconomic indicators can be used as a warning system for a stock market crashes as well. The hypothesis is that the signals of recession can be used as signals of stock market crash and that way a basis for a hedging strategy. The data is collected from the U.S. markets from the years 1983-2010. Empirical studies show that macroeconomic indicators have been able to explain the future GDP development in the U.S. in research period and they were statistically significant. A hedging strategy that combined the signals of yield spread and Consumer Confidence Index gave most useful results as a basis of a hedging strategy in selected time period. It was able to outperform buy-and-hold strategy as well as all of the technical indicator based hedging strategies.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency's safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
The Highway Safety Manual (HSM) is the compilation of national safety research that provides quantitative methods for analyzing highway safety. The HSM presents crash modification functions related to freeway work zone characteristics such as work zone duration and length. These crash modification functions were based on freeway work zones with high traffic volumes in California. When the HSM-referenced model was calibrated for Missouri, the value was 3.78, which is not ideal since it is significantly larger than 1. Therefore, new models were developed in this study using Missouri data to capture geographical, driver behavior, and other factors in the Midwest. Also, new models for expressway and rural two-lane work zones that barely were studied in the literature were developed. A large sample of 20,837 freeway, 8,993 expressway, and 64,476 rural two-lane work zones in Missouri was analyzed to derive 15 work zone crash prediction models. The most appropriate samples of 1,546 freeway, 1,189 expressway, and 6,095 rural two-lane work zones longer than 0.1 mile and with a duration of greater than 10 days were used to make eight, four, and three models, respectively. A challenging question for practitioners is always how to use crash prediction models to make the best estimation of work zone crash count. To solve this problem, a user-friendly software tool was developed in a spreadsheet format to predict work zone crashes based on work zone characteristics. This software selects the best model, estimates the work zone crashes by severity, and converts them to monetary values using standard crash estimates. This study also included a survey of departments of transportation (DOTs), Federal Highway Administration (FHWA) representatives, and contractors to assess the current state of the practice regarding work zone safety. The survey results indicate that many agencies look at work zone safety informally using engineering judgment. Respondents indicated that they would like a tool that could help them to balance work zone safety across projects by looking at crashes and user costs.
Resumo:
In 2010, the American Association of State Highway and Transportation Officials (AASHTO) released a safety analysis software system known as SafetyAnalyst. SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of Safety Performance Functions (SPFs). The system is equipped with a set of national default SPFs, and the software calibrates the default SPFs to represent the agency’s safety performance. However, it is recommended that agencies generate agency-specific SPFs whenever possible. Many investigators support the view that the agency-specific SPFs represent the agency data better than the national default SPFs calibrated to agency data. Furthermore, it is believed that the crash trends in Florida are different from the states whose data were used to develop the national default SPFs. In this dissertation, Florida-specific SPFs were developed using the 2008 Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 for both total and fatal and injury (FI) crashes. The data were randomly divided into two sets, one for calibration (70% of the data) and another for validation (30% of the data). The negative binomial (NB) model was used to develop the Florida-specific SPFs for each of the subtypes of roadway segments, intersections and ramps, using the calibration data. Statistical goodness-of-fit tests were performed on the calibrated models, which were then validated using the validation data set. The results were compared in order to assess the transferability of the Florida-specific SPF models. The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the national default SPFs with local calibration factors. The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then compared using a number of methods, including visual plots and statistical goodness-of-fit tests. The plots of SPFs against the observed crash data were used to compare the prediction performance of the two models. Three goodness-of-fit tests, represented by the mean absolute deviance (MAD), the mean square prediction error (MSPE), and Freeman-Tukey R2 (R2FT), were also used for comparison in order to identify the better-fitting model. The results showed that Florida-specific SPFs yielded better prediction performance than the national default SPFs calibrated to Florida data. The performance of Florida-specific SPFs was further compared with that of the full SPFs, which include both traffic and geometric variables, in two major applications of SPFs, i.e., crash prediction and identification of high crash locations. The results showed that both SPF models yielded very similar performance in both applications. These empirical results support the use of the flow-only SPF models adopted in SafetyAnalyst, which require much less effort to develop compared to full SPFs.
Resumo:
In this paper, we present a method for estimating local thickness distribution in nite element models, applied to injection molded and cast engineering parts. This method features considerable improved performance compared to two previously proposed approaches, and has been validated against thickness measured by di erent human operators. We also demonstrate that the use of this method for assigning a distribution of local thickness in FEM crash simulations results in a much more accurate prediction of the real part performance, thus increasing the bene ts of computer simulations in engineering design by enabling zero-prototyping and thus reducing product development costs. The simulation results have been compared to experimental tests, evidencing the advantage of the proposed method. Thus, the proposed approach to consider local thickness distribution in FEM crash simulations has high potential on the product development process of complex and highly demanding injection molded and casted parts and is currently being used by Ford Motor Company.
Resumo:
The Highway Safety Manual is the national safety manual that provides quantitative methods for analyzing highway safety. The HSM presents crash modification factors related to work zone characteristics such as work zone duration and length. These crash modification factors were based on high-impact work zones in California. Therefore there was a need to use work zone and safety data from the Midwest to calibrate these crash modification factors for use in the Midwest. Almost 11,000 Missouri freeway work zones were analyzed to derive a representative and stratified sample of 162 work zones. The 162 work zones was more than four times the number of work zones used in the HSM. This dataset was used for modeling and testing crash modification factors applicable to the Midwest. The dataset contained work zones ranging from 0.76 mile to 9.24 miles and with durations from 16 days to 590 days. A combined fatal/injury/non-injury model produced a R2 fit of 0.9079 and a prediction slope of 0.963. The resulting crash modification factors of 1.01 for duration and 0.58 for length were smaller than the values in the HSM. Two practical application examples illustrate the use of the crash modification factors for comparing alternate work zone setups.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
New DNA-based predictive tests for physical characteristics and inference of ancestry are highly informative tools that are being increasingly used in forensic genetic analysis. Two eye colour prediction models: a Bayesian classifier - Snipper and a multinomial logistic regression (MLR) system for the Irisplex assay, have been described for the analysis of unadmixed European populations. Since multiple SNPs in combination contribute in varying degrees to eye colour predictability in Europeans, it is likely that these predictive tests will perform in different ways amongst admixed populations that have European co-ancestry, compared to unadmixed Europeans. In this study we examined 99 individuals from two admixed South American populations comparing eye colour versus ancestry in order to reveal a direct correlation of light eye colour phenotypes with European co-ancestry in admixed individuals. Additionally, eye colour prediction following six prediction models, using varying numbers of SNPs and based on Snipper and MLR, were applied to the study populations. Furthermore, patterns of eye colour prediction have been inferred for a set of publicly available admixed and globally distributed populations from the HGDP-CEPH panel and 1000 Genomes databases with a special emphasis on admixed American populations similar to those of the study samples.
Resumo:
Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.
Resumo:
To evaluate the correlation between neck circumference and insulin resistance and components of metabolic syndrome in adolescents with different adiposity levels and pubertal stages, as well as to determine the usefulness of neck circumference to predict insulin resistance in adolescents. Cross-sectional study with 388 adolescents of both genders from ten to 19 years old. The adolescents underwent anthropometric and body composition assessment, including neck and waist circumferences, and biochemical evaluation. The pubertal stage was obtained by self-assessment, and the blood pressure, by auscultation. Insulin resistance was evaluated by the Homeostasis Model Assessment-Insulin Resistance. The correlation between two variables was evaluated by partial correlation coefficient adjusted for the percentage of body fat and pubertal stage. The performance of neck circumference to identify insulin resistance was tested by Receiver Operating Characteristic Curve. After the adjustment for percentage body fat and pubertal stage, neck circumference correlated with waist circumference, blood pressure, triglycerides and markers of insulin resistance in both genders. The results showed that the neck circumference is a useful tool for the detection of insulin resistance and changes in the indicators of metabolic syndrome in adolescents. The easiness of application and low cost of this measure may allow its use in Public Health services.