63 resultados para Cozzi
Resumo:
Portrait of Emilie A. Cozzie, Acting President of City Tech from 1996-1998. Emilie A. Cozzie served as acting president at City Tech from 1996-1998. Previously she was provost and senior vice president for academic affairs at the College as well as a member of the faculty for many years. One of her major accomplishments as acting president was integrating technology into classroom instruction and developing a liberal arts core curriculum for the school.
Resumo:
Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease.
Resumo:
We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.
Resumo:
Prostate cancer (CaP) is the second leading cause of cancer-related deaths in North American males and the most common newly diagnosed cancer in men world wide. Biomarkers are widely used for both early detection and prognostic tests for cancer. The current, commonly used biomarker for CaP is serum prostate specific antigen (PSA). However, the specificity of this biomarker is low as its serum level is not only increased in CaP but also in various other diseases, with age and even body mass index. Human body fluids provide an excellent resource for the discovery of biomarkers, with the advantage over tissue/biopsy samples of their ease of access, due to the less invasive nature of collection. However, their analysis presents challenges in terms of variability and validation. Blood and urine are two human body fluids commonly used for CaP research, but their proteomic analyses are limited both by the large dynamic range of protein abundance making detection of low abundance proteins difficult and in the case of urine, by the high salt concentration. To overcome these challenges, different techniques for removal of high abundance proteins and enrichment of low abundance proteins are used. Their applications and limitations are discussed in this review. A number of innovative proteomic techniques have improved detection of biomarkers. They include two dimensional differential gel electrophoresis (2D-DIGE), quantitative mass spectrometry (MS) and functional proteomic studies, i.e., investigating the association of post translational modifications (PTMs) such as phosphorylation, glycosylation and protein degradation. The recent development of quantitative MS techniques such as stable isotope labeling with amino acids in cell culture (SILAC), isobaric tags for relative and absolute quantitation (iTRAQ) and multiple reaction monitoring (MRM) have allowed proteomic researchers to quantitatively compare data from different samples. 2D-DIGE has greatly improved the statistical power of classical 2D gel analysis by introducing an internal control. This chapter aims to review novel CaP biomarkers as well as to discuss current trends in biomarker research from two angles: the source of biomarkers (particularly human body fluids such as blood and urine), and emerging proteomic approaches for biomarker research.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians.